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Abstract: Loiasis, caused by the filarial nematode Loa loa, is endemic in Central and West Africa.
Loa loa has been associated with severe adverse reactions in high Loa-infected individuals receiving
ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic
filariasis. Diagnosis of loiasis still depends on microscopy in blood samples, but this is not effective
for large-scale surveys. New diagnostics methods for loiasis are urgently needed. Previously,
we developed a colorimetric high-sensitive and species-specific LAMP for Loa loa DNA detection.
Here, we evaluate it in a set of 100 field-collected clinical samples stored as dried blood spots. In
addition, Loa loa-LAMP was also evaluated in real-time testing and compared with microscopy and
a specific PCR/nested PCR. A simple saponin/Chelex-based method was used to extract DNA.
Colorimetric and real-time LAMP assays detected more samples with microscopy-confirmed Loa loa
and Loa loa/Mansonella perstans mixed infections than PCR/nested-PCR. Samples with the highest
Loa loa microfilariae counts were amplified faster in real-time LAMP assays. Our Loa loa-LAMP could
be a promising molecular tool for the easy, rapid and accurate screening of patients for loiasis in
endemic areas with low-resource settings. The real-time testing (feasible in a handheld device) could
be very useful to rule out high-microfilariae loads in infected patients.

Keywords: Loa loa; loiasis; colorimetric LAMP; real-time LAMP; PCR; nested-PCR; dried blood spots;
saponin/Chelex; microscopy; molecular diagnosis

1. Introduction

Loa loa is a parasitic nematode that causes loiasis (commonly known as African eye
worm). The parasite is transmitted to humans by Tabanid flies of the genus Chrysops and
affects between 3 and 13 million people in the west and central regions of Africa [1]. Human
loiasis is known to be endemic in eleven countries, including Angola, Chad, the Demo-
cratic Republic of the Congo, Cameroon, the Central African Republic, Equatorial Guinea,
Ethiopia, Gabon, Nigeria, Republic of Congo and Sudan [2]. The main specific clinical
manifestations include subcutaneous edema (Calabar swelling) and pruritus. Additionally,
the ocular passage of the adult worm under the conjunctiva may be noticed. However,
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patients are usually asymptomatic or present nonspecific manifestations. Rarely, loiasis
can cause damage in other organs [3]; although, a high Loa loa microfilaremia has been
recently associated with an increased mortality risk [4]. Despite this, loiasis has been largely
neglected as a public health problem in Africa and, even to date, the disease does not appear
on the World Health Organization’s (WHO) list of neglected tropical diseases (NTD) [2].
Loiasis actually appear in the WHO-ESPEN (Expanded Special Project for Elimination
of NTDs) program [5]. In addition, in some parts of sub-Saharan Africa, co-infections of
Loa loa with other filarial species such as Mansonella perstans are possible [6,7]. M. perstans is
considered the most common of the mansonellosis parasites (tiny fly-borne filarial nema-
todes), affecting probably more than 100 million people and with 600 million people living
at risk of infection in Africa alone [8–10]. The clinical manifestations of mansonellosis are
highly non-specific and shared with other co-infections in affected people, often making its
diagnosis go unnoticed [8].

In loiasis-endemic areas, the only diagnostic method is a microscopic examination of
a mid-day capillary blood sample for morphological identification of the Loa loa parasite.
Microscopy is time-consuming, labor-intensive, requires skilled laboratory personnel and
examines a small amount of blood, making it variable in terms of sensitivity and impractical
for mass screening [6]. In an attempt to overcome the problems of traditional microscopy,
the LoaScope, a smartphone-based video-microscope has been extensively validated to
quantify Loa loa mf in fingerstick blood without the need for sample processing or stain-
ing [11–15]. However, LoaScope is calibrated to detect high-density Loa loa microfilaremia,
and values under 150 mf/mL are considered unreliable [13,15]. In addition, the specificity
on other filariae such as Mansonella spp. have not been well studied, and because it detects
moving parasites, it can only be performed with fresh blood samples. Thus, it is considered
a useful tool to support mapping projects for ivermectin-based Mass Drug Administration
(MDA) programs, not as a diagnostic method. An alternative is serological testing, but
it has low specificity due to cross-reactivity in patients with other filarial or helminthic
infections and does not differentiate between past and current infection or quantify micro-
filaremia [16,17]. More recently, a Loa Antibody Rapid Test, commercially available as a
lateral flow assay (LFA) platform, has been evaluated for epidemiological studies and to
support mapping projects for ivermectin-based MDA programs to eliminate onchocerciasis
and lymphatic filariasis. Nevertheless, the test has not been approved for use in individual
case management [18].

In the last years, a series of polymerase chain reaction (PCR)-based molecular methods,
such as conventional PCR, nested-PCR, and real-time quantitative PCR (qPCR), have been
developed to detect Loa loa DNA with high accuracy and more sensitivity than parasitological
and serological methods [19–21]. However, these technologies are not generally available
in low-resource clinical settings due to their technical complexity. A number of alternative
isothermal amplification methods targeting nucleic acids have been developed that offer sig-
nificant improvements over PCR-based methods [22]. One of the most widely adopted is the
loop-mediated isothermal amplification (LAMP) assay [23]. LAMP works under isothermal
conditions (demanding minimal infrastructure) and amplifies the target nucleic acid using
DNA polymerases with strand-displacement activity using a minimum of four, and up to
six, specially designed primers [23]. This unique method of nucleic acid amplification makes
the LAMP technology, compared to PCR-based methods, more sensitive, more specific, faster,
more cost-effective and permits easy end-product visualization of the reaction in the diag-
nostic scenario [24–26]. To date, LAMP technology has been described for the detection of
several filarial parasites, including Loa loa [27–29], Wuchereria bancrofti [30], Brugia spp. [31],
Onchocerca volvulus [32,33], and Mansonella perstans/ozzardi [34].

On the other hand, it is important to note that venous blood sample collection for
molecular analysis usually requires the support of health services and electricity for freeze-
storage and delivery to laboratories, and this is particularly lacking in low-resource loiasis
endemic areas. Capillary blood collection onto filter paper, known as dried blood spots
(DBS), is a cheaper, more practical and convenient method to overcome these limitations [35]
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and makes it attractive for sample collection, storage and transportation from field set-
tings [36]. It would be also desirable if these practical advantages could be accompanied
by a reliable, sensitive and cost-effective method of nucleic acid extraction [37]. Several
studies have already demonstrated the efficacy of using PCR-based methods and LAMP
assays for the detection of infectious agents—including parasites, viruses and bacteria—in
combination with simple DNA extraction methods from DBS [35,38,39]. Regarding this,
Chelex-100 resin-based DNA extraction methods are among the most widely used because
these procedures are simple, rapid, economic, involve no organic solvents and do not
require multiple tube transfers avoiding excessive handling [2,38,40–43].

In a previous work, we developed an in-house high-sensitive and species-specific
colorimetric LAMP assay for Loa loa DNA detection. This LAMP was successfully evaluated
in the laboratory in human venous blood samples artificially contaminated with genomic
DNA extracted from a Loa loa adult worm [27]. Here, for the first time, we evaluate
our Loa loa-LAMP in a set of field-collected clinical samples, long-term stored as DBS.
Additionally, it was the first time that the Loa loa-LAMP has been evaluated in real-time
testing. The efficacy of both Loa loa-LAMP assays was compared with microscopy, as a
reference diagnostic method, and with a specific PCR/nested-PCR assay [44].

2. Materials and Methods
2.1. Ethics Statement

Samples were obtained from the Laboratory of the National Centre of Tropical Medicine’s
repository (Collection number C.0005278/ISCIII/Spain), Institute of Health Carlos III,
Madrid, Spain, and registered according to the Spanish Law RD 1716/2011; article 22.1.
Samples belonged to the malaria project PREMAVAL, to provide baseline data on malaria
prevalence in Equatorial Guinea. The study was approved at the time by the Minister of
Health and Social Welfare of Equatorial Guinea (MINSABS) and the Ethics Committee
of the Spanish National Health Institute, Carlos III (CEI PI 22_2013-v3). The study was
conducted in accordance with the Declaration of Helsinki. Informed consent was obtained
from caregivers interviewed, the heads of the households and all subjects involved in
the study.

2.2. Samples Obtaining and Selection

A set of 100 clinical samples were selected from a collection of DBS collected 7-years
ago in a field survey carried out in Equatorial Guinea. The samples were stored at the Lab-
oratory of the National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid,
Spain. When these samples were collected, thick (20 µL) and thin (5 µL) blood smears
were first stained with 10% Giemsa solution and examined by experienced microscopists
for the morphological identification of microfilariae (mf) according to published guide-
lines [45]. Microfilaremia was expressed as microfilariae per milliliter of blood (mf/mL)
under 10× magnification and to determine the filarial species at 100× magnification with
immersion oil. All fields were examined before declaring a slide negative. Mf densities were
the average value found between the thick and thin slides by microscopic examination. A
blood finger prick from each microscopically analyzed patient was spotted onto Whatman
903TM paper (GE Healthcare Bio-Sciences Corp, Piscataway, NJ, USA) and stored in double
zip-lock plastic bags with silica gel absorbent at −20 ◦C until analysis. The selected set
of 100 DBS for this work (numbered from 1 to 100) was divided into 4 groups on basis
of the microscopy findings, as follows: group 1 (n = 13) Loa loa-positive; group 2 (n = 11),
M. perstans-positive; group 3 (n = 3), Loa loa and M. perstans mixed-positive; group 4 (n = 73),
both Loa loa and M. perstans-negative. Table 1 shows the selected groups of DBS samples
included in this study indicating mf counts.
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Table 1. Dried blood samples included in this study. Sample groups (G1, G2, G3, and G4), para-
sitological findings based on microscopy of thick and thin blood smears with Giemsa stain, sample
numbers and microfilariae counts (expressed as microfilariae per milliliter of blood; mf/mL) are
indicated. PCR/nested-PCR, colorimetric and real-time LAMP results obtained in this study are
also included.

Sample Groups Parasitological
Finding

Sample
Number mf/mL PCR/

Nested-PCR
Colorimetric

LAMP
Real-Time

LAMP

G1 (n = 13) Loa loa

18 1100 + + +

19 300 + + +

21 500 + + +

32 2200 + - -

39 3600 + + +

48 12,200 + + +

51 400 - + +

53 500 - + +

62 2000 + + +

69 11,600 + + +

75 450 - + +

76 5600 + + +

82 1900 + + +

G2 (n = 11) Mansonella perstans

24 200 - + -

44 600 - - -

49 800 - + -

50 100 - - -

52 100 - + +

54 1300 - - -

77 3200 - - -

78 100 - - -

79 400 - + +

83 1000 - - -

91 1000 - + +

G3 (n = 3) Loa loa/M. perstans

55 200/200 - + +

70 200/200 + + +

81 6000/1500 + + +

G4 (n = 73) No findings

20 - + -

42 - + -

43 - + +

45 - + +

47 - + +

68 - + -

74 - + -

Remaining nos.
up to 100 - −66 −70
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2.3. DNA Extraction from Dried Blood Spots

DNA was extracted at the Laboratory of the National Centre of Tropical Medicine
(CNMT, in Spanish), Institute of Health Carlos III, Madrid, Spain, via the Chelex-based
method in combination with saponin following the protocol previously described by Plowe
et al. [46] with slight modifications. Briefly, two filter paper discs of 5 mm in diameter were
punched from each DBS using a handheld paper punch and placed into a 1.5 mL tube.
Subsequently, 1 mL of 0.5% saponin (Fluka Biochemika, Sigma-Aldrich Chemie GmbH,
Darmstadt, Germany) in autoclaved phosphate-buffered saline (PBS) 1× was added, mixed
thoroughly, and incubated overnight at 4 ◦C or 37 ◦C for 1 h. After incubation, the brown
solutions formed were aspirated and replaced with 1 mL of PBS 1×, and the tubes were
incubated at 4 ◦C for an additional 30 min. Meanwhile, 100 mL of 5% Chelex 100 solution
(Bio Rad, Richmond, CA, USA) in water was heated at 100 ◦C in a magnetic stirrer. The
PBS was removed from tubes and 200 µL of heated 5% Chelex 100 were added to the paper
discs, vortexed for 30 s, and placed in a heat-block at 98 ◦C for 10 min for incubation. After
centrifugation at 13,000 rpm for 2 min, supernatants were recovered and centrifuged once
again to remove any remaining Chelex 100 chelating resin before collection into clean tubes.
Those extracted DNA samples were stored at −20 ◦C until further molecular analysis
by PCR/nested-PCR at the laboratory of NCTM. Aliquots of 10 µL of each extracted
DNA sample were sent frozen to the Center for Research in Tropical Diseases at the
University of Salamanca (CIETUS), Salamanca, Spain, to perform molecular analysis by
Loa loa-LAMP assay.

2.4. Molecular Analysis

The 100 DBS selected in this study based on the microscopy results were analyzed in
parallel for the species-specific molecular detection of Loa loa by a PCR/nested-PCR and
both colorimetric and real-time LAMP assays following the methodology described below.

2.4.1. PCR/Nested-PCR Assay

A nested-PCR based on sequences of the repeat 3 region (15r3) of the gene encoding
a Loa loa 15-kD protein was performed at Malaria and NTDs Laboratory-CNMT, Madrid,
Spain, following the methodology described by Touré et al. (1998) [44] with slight mod-
ifications. Briefly, for initial PCR, 5 µL of template were amplified, and 2 µL of the first
amplification product was used for the nested PCR. Amplification for initial PCR (product
of 396 bp) was carried out using an Applied Biosystems GeneAmp® PCR System 2700 for
30 cycles at 94 ◦C for 1 min (denaturation), 65 ◦C for 1 min (annealing), and 72 ◦C for 2 min
(extension). For nested-PCR (product of 366 bp), amplification was carried out under the
same conditions, but for 25 cycles. PCR products were analyzed by a QIAxcel Advanced
automatic multicapillary electrophoresis system (QIAGEN GMBH, Hilden, Germany). For
PCR reactions, positive controls consisted of Loa loa-microscopy positive clinical samples—
first tested by filarial-real time qPCR and verified by sequencing following the methodology
described by Ta-Tang et al. [21]. Negative controls consisted of filarial-microscopy negative
clinical samples and M. perstans-microscopy positive samples from the CNMT collection.
All positive results were confirmed in duplicates.

2.4.2. Colorimetric LAMP Assay

LAMP assay based on an 839 bp Loa loa-specific repetitive DNA sequence (GenBank
accession no.M34259.1) was performed at CIETUS, Salamanca, Spain, using the set of
primers and reaction conditions previously described elsewhere by our group [27]. Briefly,
LAMP reactions were carried out with a total of 15 µL reaction mixture containing 40 pmol
of each FIP and BIP primers, 5 pmol of each F3 and B3 primers and 0.57 µL of Bst 2.0 Warm
Start DNA polymerase (New England Biolabs Ltd., Hitchin, UK) with 1 µL of extracted
DNA as a template. Reactions were incubated at 65 ◦C for 50 min in a heating block
followed by heated at 80 ◦C for 5–10 min to stop the reaction. LAMP results were visually
detected by color change (green: positive; orange: negative) by adding 1 µL of 1:10 diluted
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10,000× concentration SYBR Green I (Invitrogen, Waltham, MA, USA) to the reaction tubes.
When required, LAMP products were monitored using 1.5 % agarose gel electrophoresis
and visualized under UV light in a transilluminator (UVP BioDoc-It2 Imager, Analytik Jena).

2.4.3. Real-Time LAMP Assay

Real-time LAMP was performed with the same set of primers and reagents as the col-
orimetric LAMP, but with the addition of 0.24 µL/well of the DNA-binding dye EvaGreen
20× (BIOTIUM, San Francisco, CA, USA) to monitor the fluorescence in an Eco48 real-time
PCR system (PCRmax, Beacon Road, Stone, Staffordshire, UK) programmed at 65 ◦C for
60 min followed by 10 min at 80 ◦C to stop the reaction by enzyme inactivation.

Genomic DNA (gDNA) from a Loa loa adult worm (0.5 ng/µL), and ultrapure water
instead of the DNA template, were used as positive and negative controls, respectively, in
all LAMP trials. All positive results were confirmed in duplicates.

2.5. Statistics

To estimate the accuracy of the molecular methods as diagnostic tests, the percentages
of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV)
and kappa index for each molecular technique in comparison to microscopy as a reference
diagnostic method were calculated using the free software WinEpi 2.0 [47]. The confidence
intervals (CI) were established at 95%. To estimate and analyze the correlation between
time to positivity (Tp) value in real-time LAMP positive assays and mf/mL a Pearson
correlation test in R statistical software 3.6.3 version was used, creating a scatter plot using
“ggplot2”, “ggpubr” and “ggrepel” packages.

3. Results
3.1. Application of Molecular Methods on Dried Blood Samples
3.1.1. PCR/Nested-PCR Assay

Amplification products of the expected size (396 bp for initial PCR and/or 366 bp
for nested-PCR) were obtained in 10/13 (76.92%) Loa loa microscopy-positive samples,
and also in 2/3 (66.66%) Loa loa and M. perstans mixed-microscopy positive samples. No
M. perstans-microscopy positive samples resulted positive for Loa loa. All Loa loa and
M. perstans-negative samples resulted negative for Loa loa in PCR assays. Overall, 12/100
(12%) DBS were positive (see Table 1).

3.1.2. Colorimetric LAMP Assay

Visual detection of LAMP results in testing DBS using the SYBR Green I dye-based
method is shown in Figure 1. LAMP detected 12/13 (92.31%) Loa loa-microscopy positive
samples (Figure 1a). Only one sample (no. 32) was missed. In addition, 3/3 (100%) Loa loa
and M. perstans-microscopy positive mixed samples and 7/73 (9.58%) microscopy negative
samples resulted LAMP-positive (Figure 1b). Surprisingly, up to 5/11 (45.45%) M. perstans-
microscopy positive samples resulted LAMP-positive for Loa loa (Figure 1c). In all, 27/100
(27%) DBS were LAMP-positive (see Table 1).

3.1.3. Real-Time LAMP Assay

Detection of Loa loa in DBS by real-time LAMP is shown in Figure 2. A positive result
was obtained in the same 12/13 (92.31%) Loa loa-microscopy positive samples than with
the colorimetric LAMP assay (Figure 2a). As for visual LAMP detection, sample no. 32 was
also missed by real-time LAMP. Moreover, 3/3 (100%) Loa loa and M. perstans-microscopy
positive mixed samples (Figure 2b) and 3/73 (4.11%) microscopy negative samples resulted
real-time LAMP positive (Figure 2c). Regarding the M. perstans-microscopy positive sam-
ples, 3/11 (27.27%) resulted positive (Figure 2d). In all, 21/27 (77.77%) DBS resulted in
real-time LAMP positive (see Table 1). In addition, for the 16 samples Loa loa-microscopy
positive (those included in group 1, except for sample no. 32, and those included in group 3)
a relationship between Tp and. mf/mL values was established. The samples with the
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highest mf counts of Loa loa in microscopic examination (nos. 48, 69 and 81) were amplified
with the shortest Tp values (Figure 3).
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Figure 1. Examination of dried blood samples by conventional colorimetric Loa loa-LAMP. The figure
shows the colorimetric visual detection of LAMP results in testing DBS using the SYBR Green I
dye-based method: (a) Loa loa, Loa loa-microscopy positive samples. (b) Loa loa + M. perstans, Loa loa
and Mansonella perstans-microscopy positive mixed samples; MNS, microscopy negative samples.
(c) Mansonella perstans, M. perstans-microscopy positive samples. C+, Loa loa positive control (genomic
DNA; 0.5 ng/µL); N, negative control (ultrapure water instead DNA template).

The results of PCR/nested-PCR, colorimetric LAMP and real-time LAMP assays were
compared with microscopy as the reference diagnostic method and the overlaps are shown
using Venn diagrams in Figure 4. Up to 11 of the 16 DBS samples (68.75%) with microscopy-
positive results were positive by the three molecular tests (Figure 4a). On the other hand,
up to 72 of the 84 DBS samples (85.71%) with microscopy-negative were negative for all
detection tests performed (Figure 4b). The estimation of the accuracy of the molecular
methods applied as diagnostic tests for Loa loa detection is shown in Table 2. In summary,
LAMP assays showed the highest sensitivity (94.1%) and the PCR/nested-PCR showed the
best specificity (100%).
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Figure 2. Detection of Loa loa in dried blood samples by real-time LAMP. The figure shows the
results detected by fluorescence measured in relative fluorescence units (RFU) in a PCRmax Eco 48
Real-Time qPCR System: (a) Loa loa, Loa loa- microscopy positive samples. (b) Loa Loa+ M. perstans,
Loa loa and Mansonella perstans-microscopy positive mixed samples. (c) MNS, microscopy negative
samples. (d) Mansonella perstans, M. perstans-microscopy positive samples. C+, Loa loa positive control
(genomic DNA;0.5 ng/µL); N, negative control (ultrapure water).

Table 2. Estimation of the accuracy of the molecular methods applied as diagnostic tests for Loa
loa. Estimation of sensitivity, specificity, positive and negative predictive values and Kappa index
by DNA amplification tests (colorimetric LAMP, real-time LAMP and PCR/nested-PCR) against
microscopy as reference diagnostic method for current study for identifying Loa loa infection in the
100 patients’ dried blood samples analyzed. PPV, positive predictive value; NPV, negative predictive
value; CI, confidence intervals; Kappa, Kappa index.

Colorimetric LAMP Real-Time LAMP PCR/Nested-PCR

Sensitivity (95% CI) 94.1% (81.9–105.6%) 94.1% (82.9–105.3%) 75.0% (53.8–96.2%)

Specificity (95% CI) 87.5% (78.5–93.3%) 93.3% (88.2–98.5%) 100.0%
(100.0–100.0%)

PPV (95% CI) 57.1% (36.8–74.3%) 72.7 % (54.1–91.3%) 100.0%
(100.0–100.0%)

NPV (95% CI) 98.8% (96.0–101.3%) 98.8% (96.5–101.1%) 95.5% (91.1–99.8%)

Kappa (95% CI) 62.2% (43.6–80.7%) ** 76.9% (57.6–96.2%) ** 83.4% (67.5–99.3%) ***
** good agreement; *** excellent agreement.
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4. Discussion

Routine clinical diagnosis of human loiasis and mansonellosis depends on the de-
tection of mf on Giemsa-stained thick and thin blood slides by microscopy based on
morphological identification [6]. However, the efficacy of microscopic detection of mf is
diminished by long pre-patency, periodicity in the case of Loa loa, and mild or occult infec-
tion without microfilaremia [48]. To solve these drawbacks, a number of molecular assays,
both PCR-based and LAMP-based methods, have emerged in the last years to provide an
accurate alternative for the identification and detection of filarial parasites. PCR-based
methods, mainly real-time qPCR, are generally used in laboratories in developed countries,
while LAMP-based methods are a cheaper and easy molecular option for low-income
countries and have the potential for near point-of-care (POC) application [6].

In a previous work, our group developed an in-house colorimetric LAMP-based
method for the specific detection of Loa loa DNA. This Loa loa-LAMP achieved a very
high level of sensitivity, detecting up to 0.5 attograms (ag) of genomic DNA (which is
equivalent to 1/1.000.000th of a mf) in fresh human venous blood samples artificially
enriched with Loa loa DNA [27]. Now, in this work, we evaluate for the first time, our
Loa loa-LAMP, both colorimetric and real-time testing, in a set of 100 clinical samples
collected in a loiasis-endemic area long-term stored as DBS. The saponin/Chelex-based
method was used to extract DNA from DBS for molecular analysis. This simple chelating
resin-based procedure for DNA extraction was tried because it is cheap, fast and does not
require multiple tube transfers, which avoids potential contamination when numerous
samples need to be analyzed [40,49]. For example, the saponin/Chelex-100 DNA extraction
method has already been widely and successfully used for the isolation of malaria parasite
DNA from DBS for molecular analysis by PCR [42,43,50,51].

When analyzing DNA extracted from DBS, we obtained more LAMP-positive col-
orimetric and real-time results than PCR/nested-PCR results in samples from a group of
patients with microscopy-confirmed infection by Loa loa (12/13; 92.30% vs. 10/13; 76.92%)
and by Loa loa and M. perstans mixed infection (3/3; 100% vs. 2/3; 66.66%), respectively.
Therefore, by using a simple method involving a chelating resin in combination with a
highly sensitive molecular method, either a PCR-based or LAMP-based method, it is pos-
sible to detect Loa loa in DBS as a DNA source. However, LAMP assays showed a higher
sensitivity than PCR/nested-PCR, as seems to be demonstrated by the fact that LAMP am-
plified all five Loa loa-positive samples with a lowest-microfilariae count between 300 and
500 mf/mL (nos. 19, 21, 51, 53 and 75) while PCR/nested-PCR only achieved amplification
in two of these five samples (nos. 19 and 21). Unexpectedly, both colorimetric and real-time
LAMP assays failed to amplify 1/13 samples (no. 32) with microscopy-confirmed infection
by Loa Loa (with a high count of 2200 mf/mL), which was amplified by PCR/nested-PCR.
Honestly, we do not know what could have caused this failure. A possible explanation
for this could be associated with improper sample storage, repeated freezing and thawing
cycles for different assays, or simple sample handling errors.

Furthermore, we obtained colorimetric LAMP-positive results for Loa loa in 5/11
(45.45%) samples (nos. 24, 49, 52, 79 and 91) with only microscopy-confirmed M. perstans
infection. However, when performing the real-time LAMP assay, only 3/11 (27.27%) of
those samples (nos. 52, 79 and 91) also resulted positive, but in two of them (nos. 24 and
49) no amplification was achieved. Interestingly, we also obtained colorimetric LAMP-
positive results for Loa loa in 7/73 (9.58%) samples (nos. 20, 42, 43, 45, 47, 68 and 74) with
microscopy-negative findings, but only 3/73 (4.11%) of those samples (nos. 43, 45 and 47)
resulted positive by real-time LAMP assay. We sincerely believe that those colorimetric
LAMP-positive results obtained for Loa loa in both M. perstans microscopy-positive samples
and in samples with microscopy-negative findings could be true DNA Loa loa detection,
since coinfections with M. perstans in co-endemic areas are very common [6,52], and it is
also possible that they may have gone undetected under microscopy due to their well-
known limited sensitivity for Loa loa [53]. Moreover, the higher sensitivity of our in-house
LAMP over PCR/nested-PCR could also explain these positive results. The fact that in
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these two groups of samples (M. perstans microscopy-positive and microscopy-negative
findings), up to six samples resulted positive by conventional colorimetric Loa loa-LAMP
but not in real-time settings, could be explained because of the pre-amplified EvaGreen
fluorescent dye in the reaction mixes for real-time monitoring. It has been demonstrated
that EvaGreen is able to partially inhibit LAMP reactions by reducing both the rate and final
levels of amplification [54]. On the other hand, it might be thought that the amplification of
these samples by conventional colorimetric Loa loa-LAMP could have been non-specific
amplification or post-amplification contamination by opening the tubes and adding SYBR
Green I at the end of the reaction. However, we honestly believe that the specificity
demonstrated by our Loa loa-LAMP in its previous development and setup (with no cross-
reaction with M. perstans or Brugia pahangi, a filaria closely related to Loa loa) [27], the gentle
handling of the tubes in a laminar flow hood, and the duplicate confirmation of positive
results, rule out those possibilities.

Very interestingly, those samples with the highest mf counts of Loa loa on microscopic
examination, including samples no. 48 (12,200 mf/mL) and no. 69 (11,600 mf/mL) in
Group 1 (Loa loa microscopy-positive), and also sample no. 81 (6000 mf/mL) in Group
3 (Loa loa and M. perstans mixed infection), amplified with the shortest time to positivity
(Tp) values when performing the real-time LAMP assay: 13, 14 and 15 min, respectively.
Since serious adverse events can occur in individuals with high Loa loa mf loads due to
ivermectin administration in onchocerciasis control and elimination programmes in Central
Africa, and that the risk increases significantly when Loa loa loads exceed 8000 mf/mL [55],
real-time Loa loa-LAMP could be very useful as a diagnostic tool to detect high mf loads
(which would correlate to shorter Tp values) in infected individuals to prevent the risk of
serious reactions. Considering that real-time Loa loa-LAMP can also be easily performed
on a battery-powered handheld device for outdoor use (i.e., Genie III platform), and the
simplicity of the saponin/Chelex-based DNA extraction from a small quantity of finger-
prick blood samples stored as DBS, make this combination highly desirable as a promising
tool applicable as a POC test for molecular diagnosis of loiasis in endemic areas with
resource-limited settings.

Finally, the LAMP-positive results detected in samples with negative microscopy
results reinforce the idea that the sensitivity of our in-house Loa loa-LAMP assay (both
the colorimetric and real-time) is also higher than that of microscopy for the detection of
natural Loa loa infections in clinical samples. In this sense, our results are consistent with
those obtained in a recent study in which LAMP is also found to be more sensitive than
microscopy for the detection of experimental and natural Loa loa infections in Chrysops
vectors [56]. Overall, statistically, the conventional colorimetric Loa loa-LAMP and real-time
Loa loa-LAMP showed the highest sensitivity (94.1%) compared to microscopy; although,
PPV for colorimetric Loa loa-LAMP was low (57.1%). In our experience in the develop-
ment and application of LAMP technology for the diagnosis of parasitic infections, these
statistical results (a high sensitivity and a low PPV) are also consistent with other studies
comparing the accuracy of the LAMP assay with microscopy as a gold standard in different
types of clinical specimens, either in urine (e.g., for urinary schistosomiasis diagnosis) [57]
or feces (e.g., for amphimeriasis diagnosis) [58].

5. Conclusions

Considering the results obtained in this study when analyzing DBS samples, we
can conclude that our conventional colorimetric in-house Loa loa-LAMP assay could be a
promising molecular diagnostic tool for the easy, rapid, sensible and specific screening of
patients for loiasis in endemic areas with low-resource settings. Moreover, the real-time
Loa loa-LAMP testing (that can be easily performed in a handheld device with no electricity
requirement), could be very useful to detect people with high mf loads to define more
precisely which individuals and which communities are eligible to receive ivermectin in
MDA against onchocerciasis and lymphatic filariasis in overlapping areas with Loa loa, thus
reducing possible life-threatening complications. Further research would be desirable to
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further increase specificity (e.g., by including loop primers in the LAMP design, exploring
other potential target Loa loa-specific DNA sequences) and develop a multiplex-LAMP
that would allow for simultaneous detection of different filarial species in a single patient
sample, especially in areas where loiasis is co-endemic with other filariasis.
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