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BACKGROUND: Chronic exposure to arsenic (As), a human toxicant and carcinogen, remains a global public health problem. Health risks persist after
As exposure has ended, suggesting epigenetic dysregulation as a mechanistic link between exposure and health outcomes.

OBJECTIVES: We investigated the association between total urinary As and locus-specific DNA methylation in the Strong Heart Study, a cohort of
American Indian adults with low-to-moderate As exposure [total urinary As, mean ð±SDÞ lg=g creatinine: 11.7 (10.6)].

METHODS: DNA methylation was measured in 2,325 participants using the Illumina MethylationEPIC array. We implemented linear models to test
differentially methylated positions (DMPs) and the DMRcate method to identify regions (DMRs) and conducted gene ontology enrichment analysis.
Models were adjusted for estimated cell type proportions, age, sex, body mass index, smoking, education, estimated glomerular filtration rate, and
study center. Arsenic was measured in urine as the sum of inorganic and methylated species.
RESULTS: In adjusted models, methylation at 20 CpGs was associated with urinary As after false discovery rate (FDR) correction (FDR< 0:05). After
Bonferroni correction, 5 CpGs remained associated with total urinary As (pBonferroni < 0:05), located in SLC7A11, ANKS3, LINGO3, CSNK1D,
ADAMTSL4. We identified one DMR on chromosome 11 (chr11:2,322,050-2,323,247), annotated to C11orf2; TSPAN32 genes.

DISCUSSION: This is one of the first epigenome-wide association studies to investigate As exposure and locus-specific DNA methylation using the
Illumina MethylationEPIC array and the largest epigenome-wide study of As exposure. The top DMP was located in SLC7A11A, a gene involved in
cystine/glutamate transport and the biosynthesis of glutathione, an antioxidant that may protect against As-induced oxidative stress. Additional DMPs
were located in genes associated with tumor development and glucose metabolism. Further research is needed, including research in more diverse
populations, to investigate whether As-related DNA methylation signatures are associated with gene expression or may serve as biomarkers of disease
development. https://doi.org/10.1289/EHP6263

Introduction
Arsenic (As) exposure through drinking water is a global public
health concern affecting at least 140 million people (World Health
Organization 2012). In 2001, the U.S. Environmental Protection
Agency (U.S. EPA) lowered maximum contaminant level (MCL)
from 50 to 10 lg=L.With the implementation of this new standard,
the number of people served by public water systems with water
As >10 lg=L has declined from 13 million in 2001 to 296,000 in
2018 (U.S. EPA 2018). An estimated 2.1 million individuals, how-
ever, remain exposed to As in drinking water from private wells
(Ayotte et al. 2017), which are not regulated under theMCL.

Arsenic is a human toxicant and group 1 carcinogen (World
Health Organization 2011). Chronic As exposure increases the risk
of numerous health conditions, including skin lesions, impaired in-
tellectual function, cardiovascular disease, diabetes, inflammation,
and cancers including bladder, lung, kidney, liver, skin, and possi-
bly prostate (IARC Working Group 2009; Moon et al. 2017;
National Research Council 2013). Elevated risk of cancer mortal-
ity (Roh et al. 2018; Smith et al. 2018) and lung disease (Steinmaus
et al. 2016) following early life exposure persists decades after ex-
posure has been reduced. Epigenetic dysregulation, including
changes in DNA methylation patterns, may provide a mechanistic
link between As exposure and health outcomes with prolonged la-
tency periods (Bailey et al. 2016). DNAmethylation can influence
gene expression by inhibiting transcription factor binding in pro-
moter regions and recruiting DNA binding proteins, and DNA
methylation is involved in maintaining chromosomal stability
(Robertson 2005).

In vitro, animal, and human evidence supports the findings
that alterations in the epigenome are involved in the etiology of
As-induced health outcomes and carcinogenesis (Bailey et al.
2016; Bailey and Fry 2014; Carlin et al. 2015). In epidemiologi-
cal studies, As exposure has been associated with global DNA
methylation levels (Intarasunanont et al. 2012; Kile et al. 2012;
Niedzwiecki et al. 2015, 2013; Pilsner et al. 2007, 2009). Loci-
specific DNA methylation has also been assessed in epigenome-
wide association studies (EWAS) using the Illumina Infinium
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HumanMethylation BeadChip (450K), which interrogates DNA
methylation at >480,000 loci (Argos 2015). Studies of in utero
As exposure and studies of As exposure in adults have identified
significant associations with DNA methylation at individual CpG
sites; however, the identity and number of CpGs identified (rang-
ing from 0 to 4,771 after adjusting for multiple comparisons) dif-
fer between studies (Table S1).

Inconsistent results among epidemiological studies of the asso-
ciation between As exposure and epigenetic dysregulation may be
due to differences between populations studied (e.g., age, sex,
genetic structure), levels of As exposure, differential residual con-
founding, and methods for quantifying DNA methylation (Argos
2015). Previous EWAS of As exposure have included birth cohorts
in the United States (Green et al. 2016; Koestler et al. 2013),
Bangladesh (Broberg et al. 2014; Cardenas et al. 2015; Gliga et al.
2018; Kile et al. 2012), Mexico (Rojas et al. 2015), and Taiwan
(Kaushal et al. 2017), and studies of adults in the United States
(Liu et al. 2014), Bangladesh (Argos et al. 2015; Demanelis et al.
2019), Argentina (Ameer et al. 2017), and China (Guo et al. 2018).
In addition, the samples sizes of previous EWAS have ranged from
<50–400, resulting in limited statistical, particularly when inter-
rogating a large number of CpG sites (Argos 2015).

The objective of this study was to investigate the association
between total urinary As and locus-specific DNA methylation in
the Strong Heart Study (SHS), a population-based prospective
cohort of American Indian adults with low-to-moderate levels of
As exposure primarily through drinking water (Navas-Acien et al.
2009; Nigra et al. 2019). Exposure levels were consistent in the 10-
y period following recruitment (1989–1999) due primarily to con-
taminated drinking water (Navas-Acien et al. 2009; Nigra et al.
2019). In the SHS, As exposure has been associated with cardio-
vascular disease incidence and mortality (Moon et al. 2013);
reduced lung function (Powers et al. 2019); diabetes incidence
(Grau-Perez et al. 2017); incident chronic kidney disease (Zheng
et al. 2015); and lung, prostate, and pancreatic cancer mortality
(García-Esquinas et al. 2013). In the current analyses, we analyzed
associations between total urinary As levels and DNAmethylation
measured using the InfiniumMethylationEPICBeadChip.

Methods

Study Population
The SHS has been described in detail (Lee et al. 1990). Briefly,
from July 1989 to June 1991, SHS participants were recruited from
13 tribes in Arizona, Oklahoma, and North and South Dakota. All
noninstitutionalized tribal members age 45–74 y were eligible for
enrollment. Eligible persons were identified from tribal rolls and
invited to participate in person or by mail. Cluster sampling was
used in North and South Dakota. A total of 4,549 men and women
age 45–75 y accepted to participate in the period 1989–1991 (62%
participation rate). Most participants were born in their commun-
ities and had lived there for their entire lives. In 2009,Aswasmeas-
ured in the urine of 3,973 participants with sufficient urine
available. For this study, one of the tribes declined to participate,
leaving 3,516 potential participants. We further excluded 251 par-
ticipants with prevalent cardiovascular disease, 534 participants
missing data on other cardiovascular risk factors, and 380 lacking
sufficient DNA samples, leaving 2,351 participants for bloodDNA
analyses (Figure S1). Participants included in analyses of DNA
methylationwere similar to all eligible participants (Table S2).

Ethics
The study protocols were approved by institutional review boards
from the participating research institutions, the Indian Health

Service, and the tribal communities. Participating communities
approved this manuscript and received a lay summary of findings
as part of the SHS community-based research approach that
included partnership with local communities.

Data Collection
During baseline visits, a clinical exam was conducted, and bio-
specimens were collected by trained and certified nurses and
medical examiners.

Urinary as Concentration
Arsenic concentrations were measured in all urine samples col-
lected at baseline (1989–1991) with a sufficient volume available.
Analytical methods and quality control for urine As measurement
in urine samples collected at baseline has been described in detail
(Scheer et al. 2012). In summary, baseline spot urine samples
were stored in polypropylene tubes and frozen samples were
shipped on dry ice to the MedStar Health Research Institute
(Washington, DC, USA), where they were stored at <− 70�C. In
the period 2009–2010, samples were thawed and an aliquot up to
1:0 mL was transported on dry ice to the Trace Element
Laboratory, Graz University (Austria), where they were stored at
<− 70�C until analysis for total urinary As concentrations and
As metabolite concentrations.

Urinary As concentrations were calculated as the sum of the
concentrations of inorganic (iAs), monomethyl- (MMA), and di-
methyl- (DMA) As species and are referred to herein as total uri-
nary As. iAs, MMA, and DMA concentrations were measured
using high-performance liquid chromatography coupled to induc-
tively coupled plasma mass spectrometry (Agilent z HPLC and
Agilent 7700x ICP-MS; Agilent Technologies) (Scheer et al.
2012). Interassay coefficients of variation were: 6.0%, 6.5%, and
5.9% for iAs, MMA, and DMA, respectively. The limits of detec-
tion (LOD) for iAs (AsIII +AsV), MMA, and DMA was 0:1 lg=L
(Scheer et al. 2012). Samples with As species concentrations
beneath the LOD were replaced with LOD=

p
2 (iAs: n=128,

5.5%; MMA: n=17, 0.7%; DMA: n=0). Concentrations of arsen-
obetaine, a nontoxic As species found in seafood (Joint FAO/
WHO Export Committee on Food Additives 1989), were low (me-
dian 0:65 lg=g creatinine), reflecting little seafood intake in the
study population.

Urinary creatinine was measured at the National Institute of
Diabetes and Digestive and Kidney Diseases Epidemiology and
Clinical Research Branch laboratory (Phoenix, Arizona, USA)
using an automated alkaline picrate methodology run on a rapid
flow analyzer (Lee et al. 1990). Total urinary As concentrations
(lg=L) were divided by urinary creatinine (g/L) to account for
urine dilution. Serum creatinine was measured in fasting blood
samples on a Hitachi 717 platform (Hitachi Ltd.) using an auto-
mated alkaline-picrate rate method (Roche Diagnostics). Urine
specific gravity was measured using a refractometer (Leica TS 400
Refractometer; Leica Microsystems Inc.). Serum creatinine, age,
and sex were used to calculate estimated glomerular filtration
rate (eGFR) using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation (Levey et al. 2009; Shara et al.
2012).

Epigenome-Wide DNAMethylation Assessment and Quality
Control
DNAmethylation wasmeasured in blood samples collected at base-
line. Blood samples were collected in EDTA tubes. DNA from
white blood cells was isolated using organic solvents at theMedStar
Health Research Institute or at the Texas Biomed Research Institute
and stored at <− 70�C. All epigenetic analyses were performed at
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the Texas Biomedical Research Institute. Genomic DNA was
bisulfite-converted and eluted in buffer. DNA methylation was
measured in all available samples (Figure S1). DNA methylation
was measured using the Infinium MethylationEPIC BeadChip
(850K) (Illumina, Inc.) according to themanufacturer’s instructions.
TheMethylationEPIC BeadChip provides a measure of DNAmeth-
ylation at a single nucleotide resolution at >850,000 methylation
sites, including >90% of loci measured by the 450K microarray
(Illumina 2015). Samples were randomizedwithin and across plates
to minimize potential batch artifacts. A 0% methylation and 100%
methylation control were included on each plate. In addition, two
control samples were included on each plate and standard quality
control checks (e.g., performance of Illumina controls, call rate for
detected CpGs) using the Illumina GenomeStudio software
(Illumina, Inc.). Samples with low performance were also identified
using GenomeStudio and rerun using a different DNA source if
available.

Raw methylation image files were processed using the minfi
package (Aryee et al. 2014) in R (R Core Development Team).
Density plots were generated to analyze the distribution of Beta-
values, and 18 samples that did not have classical bimodal distribu-
tions were excluded. Normalization was performed using single
sample Noob (Fortin et al. 2017). An additional eight samples
were excluded with lowmedian intensity of methylated and unme-
thylated channels [log2ðintensityÞ<10]. Probes determined to
be technical failures (p-detection>0:01 in 5% of samples) were
removed. Batch effects for plate and row were corrected using the
ComBat function in the sva package (version 3.36.0), which
employs an empirical Bayesian framework (Leek et al. 2012).
Clustering by batch and row before and after applying ComBat
was visually assessed using the first two principal components.
The proportions of CD8+ T cells, CD4+ T cells, natural killer
(NK) cells, B cells, monocytes, and granulocytes in each sample
were estimated using the Houseman projection method (Houseman
et al. 2012). In addition, probes located in X and Y chromosomes,
probes associated with single-nucleotide polymorphisms with a
minor allele frequency >5% in an admixed American population,
and probes previously identified as cross-reactive were removed
prior to analysis (McCartney et al. 2016; Pidsley et al. 2016). After
exclusion of probes and samples, DNA methylation data measured
at 788,753 loci in 2,325 sampleswere available for analysis.

For sensitivity analyses, to correct for potential probe-type
bias, Representative Concentration Pathway (RCP) normalization
was performed (Niu et al. 2016). We also conducted sensitivity
analyses using a reference-free approach to correct for cell type
distribution. We implemented ReFACTor, a method based on
sparse principal component analysis (Rahmani et al. 2016), using
our processed Beta-value data set to estimate ReFACTor compo-
nents of six cell types.

Other Variables
Height and weight were measured for body mass index (BMI)
calculation. A trained interviewer collected data on sociodemo-
graphics and health-related behaviors (e.g., age, sex, history of
smoking) (Lee et al. 1990). Diabetes status was determined
according to the American Diabetes Association classification
using fasting glucose ≥126 mg=dL, 2-h post-load plasma glucose
≥200 mg=dL, hemoglobin A1c ≥6:5%, or taking diabetes medi-
cation (American Diabetes Association 2014).

Statistical Analysis
Descriptive statistics [means and standard deviations (SDs) for
continuous variables, frequencies for categorical variables] were
calculated for all covariates. To adjust for between-individual

differences in urine dilution, total urinary As concentrations were
divided by urinary creatinine concentrations and expressed as
lg=g creatinine. Adjusted urinary As levels were right-skewed
and natural log-transformed to reduce the influence of extreme
values. Associations between estimated cell type proportions and
ln(total urinary As) were evaluated using linear models adjusted
for age, sex, BMI, and smoking status (never smoker, former
smoker, current smoker).

Differentially methylated positions (DMPs) were identified
using linear regression models implemented in the limma package
in R with empirical Bayes smoothing of standard errors (Ritchie
et al. 2015). Beta-values were logit transformed to M-values—
i.e., M-value= ln½Beta-value=ð1−Beta-valueÞ� to meet linear
regression model assumptions (Du et al. 2010). Models were
adjusted for sex, age, BMI, self-reported smoking status, education
(<high school, high school graduate or GED, >high school), study
center (Arizona, Oklahoma, North and South Dakota), eGFR, and
cell type proportion estimates. Potential systematic biases were
evaluated using Q-Q plots and the genomic inflation factor (k). For
the fully adjusted models, k=0:923, suggesting that our analyses
were not affected by genomic inflation (Figure S2). Multiple com-
parisons were accounted for using the Benjamini and Hochberg
method for false discovery rates (FDR) (Benjamini and Hochberg
1995) and the Bonferroni correction with a level of significance of
a=6×10−8. Using the p.adjust function in R, FDR-adjusted
p-values were calculated as the number of expected p-values≤ p
divided by the number of observed p-values≤ p [i.e., for N-or-
dered p-values p1 through pN FDR ¼ pi ×Nð Þ=i], and Bonferroni-
adjusted p-values were calculated as pmultiplied by the number of
tests (i.e., pi,Bonferroni = pi ×N).

Sensitivity analyses were performed for the potential effect
modifiers of sex, smoking status, study center, and diabetes status.
For participants without diabetes, specific gravity, rather than uri-
nary creatinine, was used to correct total urinary As concentrations
(lg=L) for between-individual differences in urine dilution bymul-
tiplying the sample urinary As concentration by the ratio (mean
specific gravity – 1)/(participant’s specific gravity – 1) (Miller et al.
2004). In addition, limma analyses were performed for each stra-
tum. Due to reduced sample size with stratification, significance
was assessed at a nominal p<0:05. For loci that did not achieve
significance at p<0:05 in stratified analyses, we assessed effect
modification using linear models which included an interaction
term. Sensitivity analyses were also performed for the effects of
adjusting for probe-type bias due to differences between Infinium I
and Infinium II probes on theMethylationEPIC BeadChip. Overall
limma analyses were performed on data processed using RCP nor-
malization in addition to single sample Noob normalization. We
also tested for the effect of using a reference-free method to adjust
for cell type proportion by including ReFACTor components in
adjusted limmamodels.

Recognizing the limitations of nonpenalized linear regression
for accommodating high-dimensional data or highly correlated
predictors, we also used GLMnet penalized linear regression to
identify DMPs (elastic-net, R package glmnet, version 4.0-2). The
elastic-net framework allows us to include all CpGs in the same
model, thus being able to account for the complex interrelation-
ships across CpGs and leverage the rich EWAS information of the
microarray. Elastic-net approach is a mix between Ridge and
Lasso regression (Friedman et al. 2010) that can successfully
model high-dimensional DNA methylation (Benton et al. 2017).
The algorithm fits a generalized linear model using penalized max-
imum likelihood with penalty controlled by the a parameter; we
selected a=0:05 to ensure that our model was more flexible for
correlated data. The regularization path is computed for the penalty
at values as specified by the regularization parameter k so that the
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minimummean squared error is achieved. kwas selected using 10-
fold cross-validation in our study. We fit a linear elastic-net using
ln(total urinary As) as the outcome and methylation levels as pre-
dictors, adjusting for sex, age, BMI, self-reported smoking status,
education, study center, eGFR, and cell type proportion estimates.

Differentially methylated regions (DMRs) were tested using
the DMRcate package in R, which uses a Gaussian kernel
smoothing function to grouping of significant probes identified
by limma (Peters et al. 2015). DMRcate was applied using a
Gaussian kernel bandwidth k=1,000 with a smoothing factor
C=2. The bandwidth value defines the maximum distance in nu-
cleotides used to group methylated loci.

Gene ontology (GO) enrichment analysis was conducted
using the gometh (Geeleher et al., 2013) function implemented in
the R package missMethyl (Phipson et al. 2016). The gometh
algorithm identifies GO terms that contain an overrepresentation
of genes with DMPs while accounting for differences in the a pri-
ori probabilities of genes to include DMPs based on representa-
tion among probes included on the MethylationEPIC BeadChip.
All probes tested in limma analyses (representing 25,715 genes)
and probes identified as significantly associated with urinary As
levels at pFDR < 0:05 were used as input for the gometh function.

Evaluation of Previously Identified Signals
To identify previous studies investigating the association between
As exposure and loci-specific DNA methylation, we searched
PubMed for the terms “arsenic” and “DNA methylation.” Loci
associated with As exposure reported by those studies meas-
uring DNA methylation using the Illumina HumanMethylation
BeadChip or the Infinium MethylationEPIC BeadChip were
included in a lookup approach. Loci with a nominal p<0:05 in
the limma analysis described above were considered statisti-
cally significant.

All analyses were performed using R 3.4.3 (R Core Development
Team).

Results

Participant Characteristics
The mean (SD) age of participants was 56.2 (8.1) y, 58.5% of
participants were female, and 41.6% of participants had diabetes
(Table 1). Total urinary As levels ranged from 1:7–113:0 lg=g
creatinine, with mean (±SD) 11:7 ð10:6Þ lg=g creatinine and me-
dian [interquartile range (IQR)] 8:6 ð5:2, 14:4Þlg=g creatinine.
Total urinary As was associated with the imputed proportions of
NK cells and B cells: on average, with every increase in one log-
unit of As (lg total As=g creatinine), there was an increase of 4%
in the proportion of NK cells (p=0:004), and a decrease of 7% in
the proportion of B cells (p<0:001) (Table S3). Total urinary As
was not significantly associated with the imputed proportions of
monocytes (p=0:06), CD8+ T cells (p=0:41), CD4+ T cells
(p=0:35), granulocytes (p=0:81).

Differentially Methylated Positions
In locus-specific analyses, 788,753 methylated positions were
tested for associations with ln(total urinary As), of which 39,857
(5.1%) were significantly associated with As at a nominal p<0:05.
Nominally significant loci are listed in Excel Table S1. After
adjusting for multiple comparisons using an FDR and Bonferroni
approach, 20 (pFDR < 0:05) and five (pBonferroni < 0:05) loci
remained significantly associated with ln(total urinary As), respec-
tively (Figure 1). Table 2 summarizes the loci significant at the
FDR threshold, and includes effect size estimates from models of
Beta-values for interpretation of results. Most significant loci

(n=13) were located within gene bodies. Two genes, leucine rich
repeat and Ig domain containing 3 (LINGO3) and casein kinase 1
delta (CSNK1D) contained two FDR-significant CpGs located
within the same genomic feature (in LINGO3, cg22294740 and
cg08059112 are located 74 nucleotides apart; in CSNK1D,
cg20493718 and cg21369801 are located 18 nucleotides apart). Of
the 20 FDR-significant loci, the association between urinary As
levels and DNA methylation was positive at 18 loci and inverse at
two loci (cg06690548 and cg00500428). Among all probes, uri-
nary As levels also appeared to be related to hypermethylation:
87% of the top 100 probes ranked by p-values were positively asso-
ciated with As, and 58% of all probes were positively associated
with As (Figure 2).

Sensitivity Analyses
Results were consistent in stratified analyses by sex (Table S4),
smoking status (Table S5), study center (Table S6), and diabetes sta-
tus (Table S7). By sex and smoking status, all 20 FDR-significant
sites achieved significance at a nominal p<0:05 in stratified analy-
ses. In the smallest stratum representing Arizona (n=312), 4 loci
were not associated with urinary As (cg20509831 located in A1BG-
AS1; A1BG; ZNF497: nominal p=0:839; cg18616702 located in
ADAMTSL4; MIR4257: nominal p=0:066; cg09280971: nominal
p=0:055; cg07317306: nominal p=0:075), although the observed
directions of association were consistent with unstratified analyses.
All FDR-significant loci achieved nominal significance among par-
ticipants located in Oklahoma and North and South Dakota. By dia-
betes status, all FDR-significant loci achieved nominal significance
in both strata, with the exception of one CpG among participants
without diabetes when using urinary creatinine concentrations to
correct for urine dilution [cg14595618 located in hexokinase 1

Table 1. Participant characteristics (N =2,325).

N (%)

Sex
Female 1,361 (58.5)
Male 964 (41.5)

Age [mean years (SD)] 56.2 (8.1)
Study center
Arizona 312 (13.4)
Oklahoma 981 (42.2)
North and South Dakota 1,032 (44.4)

Total urinary As [mean lg=g creatinine (SD)] 11.7 (10.6)
<5 lg=g creatinine 533 (22.9)
5–10 lg=g creatinine 1,252 (53.8)
>10 lg=g creatinine 540 (23.2)

Total urinary As by study center
[mean lg=g creatinine (SD)]

Arizona 18.9 (12.14)
Oklahoma 6.9 (5.51)
North and South Dakota 14.1 (11.75)

Education
<High school diploma 963 (41.4)
High school diploma or GED 658 (28.3)
>High school diploma 704 (30.3)

Smoking
Never smoker 684 (29.4)
Former smoker 748 (32.2)
Current smoker 893 (38.4)

BMI [mean (SD)] 30.3 (6.1)
Diabetes statusa

Diabetes diagnosis 968 (41.6)
Not diagnosed with diabetes 1,357 (58.4)

eGFR [mean mL/min (SD)] 987.4 (16.8)

Note: BMI, body mass index; eGFR, Estimated glomerular filtration rate; GED, General
Education Diploma.
aFasting glucose (≥126 mg=dL), 2-h post-load plasma glucose (≥200 mg=dL), HbA1c
(≥6:5%), or taking diabetes medication. Data are complete for all variables.
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(HK1): nominal p=0:088], and two CpGs among participants
without diabetes when using specific gravity to correct for urine
dilution (cg14595618 located in HK1: nominal p=0:283, and
cg14827056 located in EIF2C2: nominal p=0:062). We assessed

possible interaction between As exposure and diabetes status on
DNA methylation at cg14595618 using a linear model including the
interaction term lnðtotal urinaryAsÞ×diabetes status and adjusted
age, sex, BMI, smoking status, education, study center, eGFR, and

Figure 1.Manhattan plot for the epigenome-wide association of log(total urinary arsenic levels) and DNA methylation levels. limma models adjusted for age,
sex, BMI, self-reported smoking status, education (<high school, high school graduate or GED, >high school), study center (Arizona, Oklahoma, North and
South Dakota), estimated glomerular filtration rate, and cell-type proportion estimates. The solid line represents the Bonferroni threshold, and the dashed line
represents the FDR threshold for significance. Note: BMI, body mass index; FDR, false discovery rate; GED, General Education Diploma.

Table 2. Differentially methylated CpG sites associated with ln(total urinary arsenic levels) at pFDR < 0:05, sorted by chromosome and position.

CpG Chromosome Positiona Gene Feature category p-Value pFDR pBonferroni
Median

methylation (%)b

Mean difference in
% methylation
(95% CI)c

cg12106731 1 36023279 NCDN;
KIAA0319L

TSS200; TSS1500 1:24× 10−7 0.014 0.098 0.60 0.04 (0.02, 0.05)

cg07317306 1 110314824 Intergenic — 9:79× 10−7 0.041 0.773 17.75 0.50 (0.31, 0.69)
cg18616702 1 150523808 ADAMTSL4;

MIR4257
5 0UTR; TSS1500 2:35× 10−8 0.004 0.019 22.45 0.80 (0.50, 1.10)

cg04940901 3 52418250 DNAH1 Body 1:96× 10−7 0.017 0.155 71.58 0.97 (0.60, 1.33)
cg06690548 4 139162808 SLC7A11 Body 9:56× 10−10 0.001 0.001 96.24 −0:49 (−0:66, −0:32)
cg01538969 6 30624636 DHX16 Body 7:09× 10−7 0.035 0.559 57.05 1.31 (0.80, 1.82)
cg14827056 8 141550539 EIF2C2 Body 2:14× 10−7 0.017 0.169 88.76 0.58 (0.35, 0.81)
cg09280971 9 73036509 Intergenic — 4:63× 10−7 0.028 0.365 31.54 0.64 (0.40, 0.89)
cg14595618 10 71135446 HK1 Body 7:63× 10−7 0.035 0.602 39.52 1.29 (0.76, 1.82)
cg27178850 11 9039431 Intergenic — 4:66× 10−7 0.028 0.367 69.43 0.82 (0.51, 1.13)
cg03036214 15 63640658 CA12 Body 1:23× 10−6 0.048 0.967 56.18 1.30 (0.78, 1.82)
cg00500428 16 3074502 HCFC1R1;

THOC6
TSS1500; Body 1:83× 10−7 0.017 0.144 5.61 −0:31 (−0:43, −0:19)

cg03497652 16 4751569 ANKS3 Body 1:49× 10−9 0.001 0.001 74.34 1.57 (1.08, 2.06)
cg07021906 16 87866833 SLC7A5 Body 9:19× 10−7 0.040 0.725 82.02 0.85 (0.51, 1.20)
cg12116137 17 1576449 PRPF8 Body 1:22× 10−7 0.014 0.096 77.19 1.33 (0.83, 1.84)
cg21369801 17 80202961 CSNK1D Body; 3 0UTR 3:96× 10−7 0.028 0.312 77.81 1.17 (0.73, 1.62)
cg20493718 17 80202979 CSNK1D Body; 3 0UTR 1:04× 10−8 0.002 0.008 97.47 0.35 (0.20, 0.50)
cg08059112 19 2294887 LINGO3 5 0UTR 6:19× 10−7 0.034 0.488 56.18 0.89 (0.54, 1.24)
cg22294740 19 2294961 LINGO3 5 0UTR 8:78× 10−9 0.002 0.007 55.92 1.84 (1.20, 2.48)
cg20509831 19 58866362 A1BG-AS1;

A1BG;
ZNF497

Body, TSS1500;
3 0UTR

6:45× 10−7 0.034 0.509 28.10 0.89 (0.53, 1.25)

Note: —, no data; BMI, body mass index; CI, confidence interval; GED, General Education Diploma.
aGRCh37/hg19 assembly.
bPercent methylation calculated Beta-value × 100.
cEffect size estimate from limma models of Beta-values [i.e., mean difference in percent methylation for each unit change in ln(total urinary arsenic levels)] adjusted for age, sex,
BMI, self-reported smoking status, education (<high school, high school graduate or GED, >high school), study center (Arizona, Oklahoma, North and South Dakota), estimated glo-
merular filtration rate, and cell-type proportion estimates.
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cell type proportion estimates. Interaction between As levels and dia-
betes status was statistically significant (p=0:001) (Table S8).
Across strata of sex, smoking status, study center, and diabetes status,
the effect estimateswere in the same direction.

Results of analyses of probe-type normalized data were simi-
lar to those of our primary analyses. The Q-Q plot for adjusted
limma models is provided in Figure S3 (k=0:896). Seventeen of
the 20 FDR-significant sites achieved significance at pFDR < 0:05
(Table S9). Although three CpGs failed to achieve FDR signifi-
cance (cg12106731: pFDR = 0:050; cg07317306: pFDR < 0:056;
cg03036214: pFDR < 0:056), they were nominally significant at
p<0:05, and the observed magnitudes and directions of associa-
tion were consistent with our primary analyses.

We also conducted sensitivity analyses using a reference-free
approach to control for cell type proportions by adjusting limma
models for six ReFACTor components. The Q-Q plot is provided
in Figure S4 (k=1:12). Sixteen of the 20 FDR-significant sites
achieved significance at pFDR < 0:05 (Table S10). The four CpGs
that did not achieve FDR significance (cg14827056: pFDR =
0:105; cg27178850: pFDR = 0:210; cg20509831: pFDR = 0:171;
cg07317306: pFDR = 0:210) were nominally significant at p<0:05
and were consistent with our primary analyses in the magnitude
and direction of associations.

Elastic-Net Analysis
We also used the elastic-net framework to evaluate all CpGs in the
samemodel. The elastic-net model selected 315 CpGs associated with
As levels (Excel Table S2). Eight of theseCpGswere among those that
achieved FDR-significance in linear models implemented in limma
models (cg06690548, annotated to SLC7A11; cg03497652, ANKS3;
cg22294740, LINGO3; cg20493718, CSNK1D; cg18616702,
ADAMTSL4 andMIR4257; cg12106731, NCDN and KIAA0319L;
cg00500428,HCFC1R1 andTHOC6; and cg14827056,EIF2C2).

Evaluation of Previously Identified Differentially
Methylated Positions
Out of 396 PubMed results containing the terms “arsenic” and
“DNAmethylation,” 14 studies reported EWAS of the association
between As exposure and DNA methylation; 13 measured DNA
methylation using the 450K microarray, and one measured DNA
methylation using the 850K microarray (Table S1). Across these
studies, 5,801 unique CpGswere associated with As exposure after
adjustment for multiple comparisons (criteria used in each manu-
script to determine significance are summarized in Table S1). A
total of 4,595 DMPs were evaluated in the current study, including
17 DMPs identified in two studies, of which 191 achieved nominal
significance in the current study (p<0:05) (Excel Table S3; the
number and proportion of replicated CpGs for each study is shown
is Table S1). Among 168 unique DMPs identified in studies of
adults, 12 were nominally significant in our analyses. These
CpGs included cg06121226 (located in SLC4A4), identified as
significantly associated with total blood and urinary As levels
among adults in Bangladesh (n=400) (Argos et al. 2015), and
cg05428706, cg19534475 (ATP1B3), and cg06466147 (GBAP1)
identified as significantly associated with urinary or water As lev-
els among a separate cohort of adults in Bangladesh (n=396);
cg14718533 was found to be significantly associated with urinary
As levels in a meta-analysis, including both Bangladeshi cohorts
(Demanelis et al. 2019). In addition, cg15019001 (HLA-DPB2),
cg22809683 (LAMC1), cg07466788 (SLC16A3), cg19504605
(ZFP41), cg22143856 (ZNF389), cg13251666, and cg13844779,
identified as differentially methylated between As-exposed and
control families in China (n=102) (Guo et al. 2018), were nomi-
nally significant in our analyses. Among 4,427 CpGs previously
associated with in utero As exposure (Cardenas et al. 2015; Gliga
et al. 2018; Green et al. 2016; Kaushal et al. 2017; Kile et al. 2014;
Rojas et al. 2015) 179 were nominally significant in the current
study. Demanelis et al. also reported all nominally significant loci,
allowing us to check for significance of our FDR-significant CpGs.
Furthermore, cg04940901 (DNAH1) and cg09280971were associ-
ated in urinary or water As levels among the Bangladeshi cohort,
and cg00500428 (HCFC1R1; THOC6) was associated with uri-
nary As levels in the meta-analysis reported by Damanelis et al. at
p<0:05.

Differentially Methylated Regions
One DMR was identified including 20 CpGs located on chromo-
some 11 (chr11:2,322,050-2,323,247) (Figure 3). Table 3 lists
the 20 CpGs ordered by genomic coordinates. This region spans
the body, first exon, and TSS200 of C11orf21, and the first exon,
TSS200, TSS1500, and 50UTR of TSPAN32. Overall, the DNA
methylation in this region was low, ranging from less than 1% to
12%. Fifteen of the 20 loci located within this region were posi-
tively and significantly associated with total urinary As levels at
a nominal p<0:05. With the exception of cg02537342, all CpGs
were positively correlated with each other (p<0:05).

GO Analysis
GO analysis identified 190 GO terms overrepresented among genes
containing FDR-significant DMPs and consisting of at least two
genes (molecular function: 52 terms; biological process: 111 terms;
cellular component: 27 terms); however, none of these terms
achieved statistical significance after accounting for multiple com-
parisons. Table 4 presents the top 10 GO terms in each ontology
ranked by p-value. This list includes several sets of related terms
associated with the transport of cysteine. For example, amino acid
transmembrane transporter activity (GO: 0015171; 2 of 76 genes dif-
ferentially methylated; p=0:005) is a parent of neutral amino acid

Figure 2. Volcano plot for the epigenome-wide association of log(total urinary
arsenic levels) and DNA methylation levels. Limma models adjusted for age,
sex, BMI, self-reported smoking status, education (<high school, high school
graduate or GED, >high school), study center (Arizona, Oklahoma, North and
South Dakota), estimated glomerular filtration rate, and cell-type proportion
estimates. The solid line represents the Bonferroni threshold and the dashed
line represents the FDR threshold for significance. Note: BMI, body mass
index; FDR, false discovery rate; GED, General Education Diploma.
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transmembrane transporter activity (GO: 0015175; 2 of 33 genes dif-
ferentially methylated; p=0:001), L-amino acid transmembrane
transporter activity (GO: 0015179; 2 of 56 genes differentially meth-
ylated; p=0:002), and sulfur amino acid transmembrane transporter
activity (GO: 0000099; 1 of 7 genes differentially methylated;
p=0:008). We excluded the GO term cystine:glutamate antiporter
activity (GO: 0015327), an offspring of GO: 0015171 representing
the single gene solute carrier family 7 member 11 (SLC7A11), which
was identified as overrepresented among differential methylated
genes (p=0:001). However, cg06690548, the topDMP, is annotated
to SLC7A11, suggesting the importance of differential methylation
within this pathway.

Discussion
This EWAS investigated the relationship between low-to-moderate
levels of As exposure and loci-specific DNA methylation in a
population-based prospective cohort study of American Indian
adults. Twenty novel CpGs were associated with total urinary As

levels (pFDR < 0:05); methylation levels of 18 CpGswere positively
associated with As. In addition, one DMR (chr11:2,322,050-
2,323,247)was identified.

The most significantly associated CpG, cg06690548, is located
in the gene body of solute carrier family 7 member 11 (SLC7A11).
SLC7A11 is a protein coding gene for a subunit of the amino-acid
transporter cystine:glutamate antiporter system x−c , which exchanges
cystine for glutamate within cells (Lim and Donaldson 2011), pro-
viding cysteine for glutathione (GSH) biosynthesis (Conrad and
Sato, 2012). GSH is an endogenous antioxidant (Forman et al. 2009)
and may be protective against As-induced oxidative stress. In a
cross-sectional study of As-exposed adults in Bangladesh, water As
concentrations were negatively associated with GSH concentrations
in blood (Hall et al. 2013). Arsenic may deplete GSH through the
induction of reactive oxygen species, or itmay affectGSHbiosynthe-
sis through an epigenetic mechanism. A paralog of SLC7A11, solute
carrier family 7 member 5 (SLC7A5) was also identified as contain-
ing a differentially methylated CpG (cg07021906). SLC7A5 is
involved in the transport of amino acids including glutamine

Figure 3. Epigenome-wide association results in the genomic region containing the differentially methylated region (DMR) chr11:2,322,050-2,323,247 (shaded
area). The first panel shows the region from 7,000 nucleotides upstream of the DMR to 17,000 nucleotides downstream of the DMR; the second panel shows
the region from 300 nucleotides upstream of the DMR to 300 nucleotides downstream of the DMR. Difference in % methylation from limma models of Beta-
values [i.e., mean difference in percent methylation for each unit change in ln(total urinary arsenic levels)] adjusted for age, sex, BMI, self-reported smoking
status, education (<high school, high school graduate or GED, >high school), study center (Arizona, Oklahoma, North and South Dakota), estimated glomeru-
lar filtration rate, and cell type proportion estimates. Trend in odds of methylation related to As levels is indicated by a solid blue line fitted using polynomial
splines. Note: BMI, body mass index; GED, General Education Diploma.
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Table 4. Top gene ontology (GO) terms overrepresented among genes containing DMPs ordered by p-value and stratified by ontology. The top 10 significant
GO terms represented by two or more genes in each ontology are shown. All probes tested in limma analyses (representing 25,715 genes) and probes identified
as significantly associated with urinary as levels at pFDR < 0:05 were used as input for GO analysis.

Accession number Term Genes in GO term Differentially methylated genes p-Value

Molecular function
GO: 0015175 Neutral amino acid transmembrane transporter activity 33 2 0.001
GO: 0015179 L-amino acid transmembrane transporter activity 56 2 0.002
GO: 0000386 Second spliceosomal transesterification activity 3 1 0.003
GO: 0098808 mRNA cap binding 2 1 0.004
GO: 0015297 Antiporter activity 77 2 0.004
GO: 0015171 Amino acid transmembrane transporter activity 76 2 0.005
GO: 0140098 Catalytic activity, acting on RNA 361 3 0.006
GO: 0030620 U2 snRNA binding 6 1 0.006
GO: 0097157 Pre-mRNA intronic binding 7 1 0.008
GO: 0000099 Sulfur amino acid transmembrane transporter activity 7 1 0.008
Biological process
GO: 1902475 L-alpha-amino acid transmembrane transport 44 2 0.001
GO: 0006396 RNA processing 902 5 0.002
GO: 0015807 L-amino acid transport 62 2 0.003
GO: 1905424 Regulation of Wnt-mediated midbrain dopaminergic

neuron differentiation
2 1 0.003

GO: 1905426 Positive regulation of Wnt-mediated midbrain dopaminergic
neuron differentiation

2 1 0.003

GO: 0035279 mRNA cleavage involved in gene silencing by miRNA 2 1 0.004
GO: 0098795 mRNA cleavage involved in gene silencing 2 1 0.004
GO: 0003333 Amino acid transmembrane transport 74 2 0.004
GO: 1904958 Positive regulation of midbrain dopaminergic neuron

differentiation
3 1 0.004

GO: 1905616 Regulation of miRNA mediated inhibition of translation 2 1 0.004
Cellular component
GO: 0036126 Sperm flagellum 81 2 0.003
GO: 0097729 9+2 motile cilium 81 2 0.003
GO: 0000347 THO complex 5 1 0.003
GO: 0000445 THO complex part of transcription export complex 5 1 0.003
GO: 0036156 Inner dynein arm 4 1 0.008
GO: 0031514 Motile cilium 152 2 0.010
GO: 0070578 RISC-loading complex 9 1 0.010
GO: 0035068 Micro-ribonucleoprotein complex 9 1 0.012
GO: 0097223 Sperm part 186 2 0.012
GO: 0000346 Transcription export complex 12 1 0.013

Table 3. CpGs Located in the differentially methylated region chr11:2,322,050-2,323,247.

CpG Positiona Gene Feature category p-Value Median % methylationb
Mean difference in %
methylation (95% CI)c

cg25961099 2322050 C11orf21; TSPAN32 Body; TSS1500 0.019 9.02 0.08 (−0:11, 0.26)
cg01211906 2322286 C11orf21; TSPAN32 Body; TSS1500 0.002 2.91 0.10 (0.02, 0.18)
cg09114153 2322329 C11orf21; TSPAN32 Body; TSS1500 0.009 9.09 0.40 (0.15, 0.64)
cg01612681 2322386 C11orf21; TSPAN32 Body; TSS1500 1:46× 10−4 1.12 0.17 (0.06, 0.29)
cg13592872 2322500 C11orf21; TSPAN32 Body; TSS1500 0.502 4.20 0.28 (0.12, 0.45)
cg21027517 2322507 C11orf21; TSPAN32 Body; TSS1500 0.150 3.80 0.27 (0.08, 0.46)
cg05509777 2322517 C11orf21; TSPAN32 Body; TSS1500 0.096 3.75 0.37 (0.14, 0.60)
cg10782575 2322543 C11orf21; TSPAN32 Body; TSS1500 0.001 10.77 0.49 (0.18, 0.81)
cg00502099 2322618 C11orf21; TSPAN32 Body; TSS1500 0.092 1.18 0.09 (−0:02, 0.20)
cg03494648 2322642 C11orf21; TSPAN32 Body; TSS1500 4:05× 10−4 1.06 0.02 (−0:02, 0.05)
cg15924868 2322674 C11orf21; TSPAN32 Body; TSS1500 0.024 0.57 0.03 (0.00, 0.05)
cg02537342 2322729 C11orf21; TSPAN32 Body; TSS1500 0.001 6.96 0.04 (−0:15, 0.22)
cg00041575 2322741 C11orf21; TSPAN32 Body; TSS1500 2:12× 10−4 1.61 0.06 (−0:02, 0.15)
cg05403469 2322781 C11orf21; TSPAN32 Body; TSS1500 0.048 1.34 −0:01 (−0:13, 0.12)
cg19766471 2322802 C11orf21; TSPAN32 Body; TSS1500 0.005 11.75 0.72 (0.29, 1.16)
cg22210337 2322808 C11orf21; TSPAN32 Body; TSS1500 0.002 11.46 1.05 (0.40, 1.70)
cg21201830 2323056 C11orf21; TSPAN32 Body, 1stExon; TSS200 0.003 1.80 0.13 (0.01, 0.25)
cg15579389 2323059 C11orf21; TSPAN32 Body, 1stExon; TSS200 0.003 0.89 0.04 (−0:01, 0.09)
cg09358071 2323083 C11orf21; TSPAN32 Body, 1stExon; TSS200 9:33× 10−4 0.92 0.04 (0.01, 0.07)
cg05572370 2323247 C11orf21; TSPAN32 TSS200, 1stExon; 5 0UTR 0.337 2.22 0.08 (−0:02, 0.17)

Note: BMI, body mass index; CI, confidence interval; GED, General Education Diploma.
aGRCh37/hg19 assembly.
bPercent methylation calculated Beta-value × 100.
cEffect size estimate from limma models of Beta-values [i.e., mean difference in percent methylation for each unit change in ln(total urinary arsenic levels)] adjusted for age, sex,
BMI, self-reported smoking status, education (<high school, high school graduate or GED, >high school), study center (Arizona, Oklahoma, North and South Dakota), estimated glo-
merular filtration rate, and cell type proportion estimates.
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(Pochini et al. 2014), which may be deaminated to glutamate and
used for GSHbiosynthesis (Y. Liu et al. 2014).

Additional DMPs may be biologically responsive to As expo-
sure. Urinary As levels were associated with DNA methylation of
cg22294740 and cg08059112, located in LINGO3, a transmem-
brane protein expressed in the nervous system (Haines and Rigby,
2008). LINGO3 has also been identified as a gene hub in meta-
static melanoma tumors (Wang et al. 2018). Urinary As levels
were also associated with DNA methylation of cg20493718 and
cg21369801, located in the gene body of CSNK1D. The casein ki-
nase 1 (CK1) protein family is involved in a broad range of cellu-
lar processes, including control of DNA replication and repair,
apoptosis, and circadian rhythm (Schittek and Sinnberg 2014) and
has been association with regulation of the tumor suppressor pro-
tein p53 (Schittek and Sinnberg 2014). Prenatal As exposure has
been associated with differential expression (Fry et al. 2007; Rojas
et al. 2015) and DNA methylation (Rojas et al. 2015) of CSNK1D
in cord blood.

Seven of the 20 CpGs associated with total urinary As levels
were novel to the 850K (cg07317306, cg27178850, cg09280971,
cg14595618, cg04940901, cg18616702, cg20509831), all of
which were located in ENCODE DNase hypersensitive sites. The
ENCODE project has mapped DNase sites, associated with ac-
cessible chromatin regions (The ENCODE Project Consortium
2012). The three significant CpGs not annotated to a RefSeq gene
(cg07317306, cg27178850, cg09280971) were, however, anno-
tated to DNase hypersensitive sites, suggesting that they may
have functional roles.

Overall, results were consistent in analyses of data normalized
for probe type and using a reference-free approach to adjust for cell
type proportions. In addition, results were robust in sensitivity
analyses stratifying by sex, smoking status, study center, and dia-
betes status. This study includes American Indian participants
recruited from three genetically, environmentally, and culturally
distinct study centers in Arizona, Oklahoma, and North and South
Dakota. Consistency across study centers provide internal validity
to our analysis and suggest that factors associated with study center
do not modify the observed relationship between As exposure and
DNA methylation. In addition, analyses stratified by diabetes sta-
tus were consistent. Due to the effect of uncontrolled diabetes on
urine osmolality (Voinescu et al. 2002), in overall analyses, we
corrected for between-individual differences in urine dilution by
dividing total urinary As concentrations by urinary creatinine con-
centrations. In analyses of participants without diabetes, total uri-
nary As concentrations were corrected for both urinary creatinine
and specific gravity. All FDR-significant CpGs achieved signifi-
cance at a nominal p<0:05 among participants with diabetes.
Among those without diabetes cg14595618 located in HK1, a pro-
tein coding gene involved in glucose metabolism, was not signifi-
cantly associated with total urinary As concentration corrected for
urine dilution using urinary creatinine (nominal p=0:088) or spe-
cific gravity (nominal p=0:283). In a linear model we observed
significant interaction between As levels and diabetes status on
cg14595618 methylation (p=0:001). Due to the role of HK1 in
glucose metabolism, further research is needed to determine the
relationship between As exposure, diabetes status, and HK1 DNA
methylation.

We found overlap between results from our elastic-net
model, which is suitable for modeling high-dimensional data
with correlated predictors and results from linear models imple-
mented in limma. Among 315 CpG selected by the elastic-net
model as associated with urinary As levels, 8 were identified
as FDR-significant, and 280 achieved nominal significance
(p<0:05) in limma analyses. Replication of our top CpGs using
an elastic-net approach suggests that our results are robust to

limitations of performing nonpenalized linear regression on
high-dimensional EWAS data.

The one identified DMR (chr11:2,322,050-2,323,247) included
the open reading frame C11orf21 and spanned several functional
regions of tetraspanin 32 (TSPAN32), including the TSS1500,
TSS22, 50UTR, and first exon. C11orf21/TSPAN32 is located in a
genomic region containing a cluster of imprinted genes (Smith et al.
2007), and alterations of this region have been associated with
Beckwith–Wiedemann syndrome, a condition associated with
abnormal growth and tumors in childhood (Koufos et al. 1989).
Genetic variation in C11orf21/TSPAN32 has been associated with
chronic lymphocytic leukemia in a genome-wide association study
(Berndt et al. 2013).

Previous EWAS among adults have found conflicting results.
Studies of adult populations have included cohorts in Bangladesh,
identifying 4 CpGs associated with As measured in urine or blood
at pBonferroni < 0:05 (n=400; 3 CpGs overlapped for both exposure
measures) (Argos et al. 2015) and 50 CpGs associated with As
measured in urine or drinking water at FDR< 0:05 (n=396; 8
CpGs overlapped for both exposure measures) (Demanelis et al.
2019). In addition, in a study of women in Argentina (n=93), dif-
ferential methylation was found at 6 loci (Ameer et al. 2017), and
in a study of families in China (adults and children; n=102), differ-
ential methylation was found at 85 loci (Guo et al. 2018). To
understand the overlap between loci previously identified as differ-
entially methylated with As exposure, we used a lookup approach
of studies analyzing the association between As exposure and
DNA methylation measured using the 450K or 850K microarrays.
CpGs previously associated with As exposure were evaluated in
the current study. Among 4,595 CpGs previously identified as
associatedwithAs exposure after adjustment formultiple compari-
sons, 191 achieved nominal significance in our analyses (p<0:05).
This overlap between significant loci may be due to differences in
population, time of exposure, tissue evaluated, and analytical
methods (Table S1). Of the 14 studies identified in our lookup
approach, 9 evaluated the association between prenatal As expo-
sure and DNA methylation (8 measured DNA methylation in cord
blood or placental samples, and onemeasured DNAmethylation in
blood mononuclear cells collected at 9 y). Only one study of adults
reported results of DNA methylation measured using the 850K
microarray (Demanelis et al. 2019). In addition, levels of As expo-
sure differed markedly between population studies; for example,
among studies reporting urinaryAs concentrations adjusted for uri-
nary creatinine, mean concentrations ranged from 23 lg=g creati-
nine (Kaushal et al. 2017) to >302 lg=g creatinine (Argos et al.
2015). Although speculative, limited replication across EWAS
may also be due in part to broad, nonspecific epigenetic dysregula-
tion, as suggested by the range of health outcomes that have been
associated with As exposure.

We also identified significant associations between urinary As
levels and imputed leukocyte proportions, specifically a positive
association with the proportion of NK cells (B=0:005; p=0:004)
and a negative association with the proportion of B cells
(B= − 0:005; p<0:001). Associations betweenmaternal drinking
water As levels and imputed leukocyte proportions in cord blood
have previously been reported by Kile et al. (2014); however, As
levels were positively associated with the proportion of CD8+ T
cells and negatively associated with the proportion of CD4+ T
cells. Although our study found relationships between urinary As
levels and the proportions of CD8+ T and CD4+ T in the same
directions, these associations were not significant (CD8+ T-cell
proportion: B=0:001 and p=0:41; CD4+ T-cell proportion:
B= − 0:002 and p=0:35).

This study was limited by measuring DNA methylation in pe-
ripheral blood, and observed associations may not be present in
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other tissues, although As exposure is known to affect a broad
range of tissues (Naujokas et al. 2013). Peripheral blood leuko-
cytes, moreover, consist of a mixture of cell types, including T
cells, B cells, NK cells, monocytes, and granulocytes. Due to epi-
genetic control of cellular differentiation (Khavari et al. 2010),
DNA methylation patterns differ among cell types, and blood cell
composition may be associated with environmental exposures
(Lurà et al. 2018; Stiegel et al. 2016). Therefore, EWAS using
mixtures of cell types may be subject to confounding. In the
current study, the Houseman regression calibration method
(Houseman et al. 2012) was implemented to estimate leukocyte
composition, and the proportions of six cell types were controlled
for in all models. This method is generally accepted to remove
confounding by cell type, although EWAS results may be influ-
enced by variation in cell subtype proportions not characterized
by the six main cell types (Bauer et al. 2015).

This study was also limited in measuring DNA methylation
with standard bisulfite conversion, which is not able to distin-
guish between 5-methylcytosine and 5-hydroxymethylcytosine,
an intermediate of active demethylation (Klug et al. 2013).
Although 5-hydroxymethylcytosine is less abundant in the human
genome, in a study of adults in Bangladesh As exposure was
found to have sex-specific associations with global levels of
5-hydroxymethylcytosine (Niedzwiecki et al. 2015). Our observed
associations may be due in part to As-associated variation in
5-hydroxymethylcytosine levels. We were also limited by lack of
data on gene expression. Although CpGs located in biologically
relevant genes were identified, it is not known if alterations in
these epigenetic markers are associated with functional changes in
gene expression. In addition, this study included American Indian
adults with low-to-moderate As exposure through drinking water.
It is not known if the association between As exposure and DNA
methylation may differ among populations.

The strengths of this study include the large sample size in a
population with low-to-moderate levels of As exposure, use of
the 850K microarray to measure DNA methylation, and robust-
ness of the findings in sensitivity analyses. This study had a large
sample size (n=2,325) in comparison with previous EWAS of
As exposure, in which n ranged from <50–400 (Table S1).
Because power in EWAS depends on sample size, effect size,
and correction for multiple testing, large sample size is particu-
larly advantageous for 850K studies to allow for the detection of
small effect sizes. Few EWAS of adults have focused on popula-
tions with low-to-moderate levels of As exposure through drink-
ing water. In our study, low concentrations of arsenobetaine in
urine (median 0:65 lg=g creatinine) reflect that seafood intake is
not a major contributor to urinary As species including DMA, in
contrast with the general U.S. population in which DMA often
reflects exposure to seafood arsenicals rather than to inorganic As
(Navas-Acien et al. 2011). In addition, previous EWAS of As ex-
posure have predominantly measured DNA methylation using the
450K microarray, which interrogates >480,000 CpGs; the 850K
microarray, however, interrogates >850,000 CpGs, including
>90% of 450K loci and increased coverage of regulatory ele-
ments including ENCODE DNase hypersensitive sites and
FANTOM5 enhancers (Pidsley et al. 2016).

Conclusions
To our knowledge, this is the largest study to investigate the asso-
ciation between chronic As exposure, mostly through drinking
water (Navas-Acien et al. 2009), and epigenome-wide DNA
methylation in blood, and one of the first using the 850K microar-
ray. In a cohort of American Indian adults with low-to-moderate
levels of exposure, significant associations between total urinary
As levels and DNA methylation were observed at 20 novel

CpGs, including loci located in genes involved in As-related
mechanistic pathways and health outcomes. Further investigation
is necessary to determine whether As-related DNA methylation
signatures are common across populations and levels of expo-
sure, and whether observed differences in DNA methylation are
associated with gene expression or may serve as biomarkers of
disease development.

Acknowledgments
The authors would like to thank all Strong Heart Study

participants and staff who have made this work possible. This
study was supported by the National Institute of Environmental
Health Sciences (NIEHS) grants T32ES007322, F31ES029019,
R01ES025216, P42ES010349, and P30ES009089; the National
Center for Advancing Translational Sciences (NCATS) grant
TL1TR001875; and the National Heart, Lung, and Blood Institute
grants 75N92019D00027, 75N92019D00028, 75N92019D00029,
and 75N92019D00030.

References
Ameer SS, Engström K, Hossain MB, Concha G, Vahter M, Broberg K. 2017. Arsenic

exposure from drinking water is associated with decreased gene expression
and increased DNA methylation in peripheral blood. Toxicol Appl Pharmacol
321:57–66, PMID: 28242323, https://doi.org/10.1016/j.taap.2017.02.019.

American Diabetes Association. 2014. Diagnosis and classification of diabetes
mellitus. Diabetes Care 37 (suppl 1):S81–S90, https://doi.org/10.2337/dc14-S081.

Argos M. 2015. Arsenic exposure and epigenetic alterations: recent findings based
on the Illumina 450K DNA Methylation Array. Curr Environ Health Rep 2(2):137–
144, PMID: 26231363, https://doi.org/10.1007/s40572-015-0052-1.

Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, et al. 2015. Gene-specific
differential DNA methylation and chronic arsenic exposure in an epigenome-
wide association study of adults in Bangladesh. Environ Health Perspect
123(1):64–71, PMID: 25325195, https://doi.org/10.1289/ehp.1307884.

Aryee M, Jaffe A, Corrada-Bravo H, Ladd-Acosta C, Feinberg A, Hansen K, et al.
2014. Minfi: A flexible and comprehensive Bioconductor package for the analy-
sis of Infinium DNA Methylation microarrays. Bioinformatics 30(10):1363–1369,
PMID: 24478339, https://doi.org/10.1093/bioinformatics/btu049.

Ayotte JD, Medalie L, Qi SL, Backer LC, Nolan BT. 2017. Estimating the high-
arsenic domestic-well population in the conterminous United States. Environ
Sci Technol 51(21):12443–12454, PMID: 29043784, https://doi.org/10.1021/acs.
est.7b02881.

Bailey KA, Fry RC. 2014. Arsenic-associated changes to the epigenome: what are
the functional consequences? Curr Environ Health Rep 1(1):22–34, PMID:
24860721, https://doi.org/10.1007/s40572-013-0002-8.

Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim K-W, Navasumrit P, et al. 2016.
Mechanisms underlying latent disease risk associated with early-life arsenic
exposure: current research trends and scientific gaps. Environ Health
Perspect 124(2):170–175, PMID: 26115410, https://doi.org/10.1289/ehp.1409360.

Bauer M, Linsel G, Fink B, Offenberg K, Hahn AM, Sack U, et al. 2015. A varying T cell
subtype explains apparent tobacco smoking induced single CpG hypomethylation
in whole blood. Clin Epigenetics 7(1):81, PMID: 26246861, https://doi.org/10.1186/
s13148-015-0113-1.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc 57(1):289–300, https://doi.org/
10.1111/j.2517-6161.1995.tb02031.x.

Benton MC, Sutherland HG, Macartney-Coxson D, Haupt LM, Lea RA, Griffiths LR.
2017. Methylome-wide association study of whole blood DNA in the Norfolk
Island isolate identifies robust loci associated with age. Aging (Albany NY).
9(3):753–768, PMID: 28255110, https://doi.org/10.18632/aging.101187.

Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, Wang Z, et al. 2013.
Genome-wide association study identifies multiple risk loci for chronic lympho-
cytic leukemia. Nat Genet 45(8):868–876, PMID: 23770605, https://doi.org/10.
1038/ng.2652.

Broberg K, Ahmed S, Engström K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al.
2014. Arsenic exposure in early pregnancy alters genome-wide DNA methyla-
tion in cord blood, particularly in boys. J Dev Orig Health Dis 5(4):288–298,
PMID: 24965135, https://doi.org/10.1017/S2040174414000221.

Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G,
et al. 2015. In utero arsenic exposure and epigenome-wide associations in pla-
centa, umbilical artery, and human umbilical vein endothelial cells. Epigenetics
10(11):1054–1063, PMID: 26646901, https://doi.org/10.1080/15592294.2015.1105424.

Environmental Health Perspectives 067015-10 128(6) June 2020

https://www.ncbi.nlm.nih.gov/pubmed/28242323
https://doi.org/10.1016/j.taap.2017.02.019
https://doi.org/10.2337/dc14-S081
https://www.ncbi.nlm.nih.gov/pubmed/26231363
https://doi.org/10.1007/s40572-015-0052-1
https://www.ncbi.nlm.nih.gov/pubmed/25325195
https://doi.org/10.1289/ehp.1307884
https://www.ncbi.nlm.nih.gov/pubmed/24478339
https://doi.org/10.1093/bioinformatics/btu049
https://www.ncbi.nlm.nih.gov/pubmed/29043784
https://doi.org/10.1021/acs.est.7b02881
https://doi.org/10.1021/acs.est.7b02881
https://www.ncbi.nlm.nih.gov/pubmed/24860721
https://doi.org/10.1007/s40572-013-0002-8
https://www.ncbi.nlm.nih.gov/pubmed/26115410
https://doi.org/10.1289/ehp.1409360
https://www.ncbi.nlm.nih.gov/pubmed/26246861
https://doi.org/10.1186/s13148-015-0113-1
https://doi.org/10.1186/s13148-015-0113-1
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://www.ncbi.nlm.nih.gov/pubmed/28255110
https://doi.org/10.18632/aging.101187
https://www.ncbi.nlm.nih.gov/pubmed/23770605
https://doi.org/10.1038/ng.2652
https://doi.org/10.1038/ng.2652
https://www.ncbi.nlm.nih.gov/pubmed/24965135
https://doi.org/10.1017/S2040174414000221
https://www.ncbi.nlm.nih.gov/pubmed/26646901
https://doi.org/10.1080/15592294.2015.1105424


Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, et al. 2015.
Arsenic and environmental health: state of the science and future research
opportunities. Environ Health Perspect, https://doi.org/10.1289/ehp.1510209.

Conrad M, Sato H. 2012. The oxidative stress-inducible cystine/glutamate anti-
porter, system xc: cystine supplier and beyond. Amino Acids 42(1):231–246,
PMID: 21409388, https://doi.org/10.1007/s00726-011-0867-5.

Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, et al.
2019. Association of arsenic exposure with whole blood DNA methylation: an
epigenome-wide study of Bangladeshi adults. Environ Health Perspect 127,
https://doi.org/10.1289/EHP3849.

Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. 2010. Comparison of
Beta-value and M-value methods for quantifying methylation levels by micro-
array analysis. BMC Bioinformatics 11:587, PMID: 21118553, https://doi.org/10.
1186/1471-2105-11-587.

Forman HJ, Zhang H, Rinna A. 2009. Glutathione: overview of its protective roles,
measurement, and biosynthesis. Mol Aspects Med 30(1–2):1–12, PMID:
18796312, https://doi.org/10.1016/j.mam.2008.08.006.

Fortin J-P, Triche TJ, Hansen KD, Hansen KD. 2017. Preprocessing, normalization and
integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics
33(4):558–560, PMID: 28035024, https://doi.org/10.1093/bioinformatics/btw691.

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw 33(1):1–22, PMID: 20808728.

Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al. 2007.
Activation of inflammation/NF-κB signaling in infants born to arsenic-exposed
mothers. PLoS Genet 3(11):e207, PMID: 18039032, https://doi.org/10.1371/journal.
pgen.0030207.

García-Esquinas E, Pollán M, Umans JG, Francesconi KA, Goessler W, Guallar E,
et al. 2013. Arsenic exposure and cancer mortality in a US-based prospective
cohort: the Strong Heart Study. Cancer Epidemiol Biomarkers Prev 22(11):1944–
1953, PMID: 23800676, https://doi.org/10.1158/1055-9965.EPI-13-0234-T.

Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C. 2013. Gene-
set analysis is severely biased when applied to genome-wide methylation
data. Bioinformatics 29(15):1851–1857, PMID: 23732277, https://doi.org/10.
1093/bioinformatics/btt311.

Gliga AR, Engström K, Kippler M, Skröder H, Ahmed S, Vahter M, et al. 2018.
Prenatal arsenic exposure is associated with increased plasma IGFBP3 con-
centrations in 9-year-old children partly via changes in DNA methylation. Arch
Toxicol 92(8):2487–2500, PMID: 29947889, https://doi.org/10.1007/s00204-018-
2239-3.

Grau-Perez M, Kuo C-C, Gribble MO, Balakrishnan P, Jones Spratlen M, Vaidya D,
et al. 2017. Association of low-moderate arsenic exposure and arsenic metab-
olism with incident diabetes and insulin resistance in the Strong Heart Family
Study. Environ Health Perspect 125(12):127004, PMID: 29373862, https://doi.org/
10.1289/EHP2566.

Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA,
et al. 2016. Epigenome-wide assessment of DNA methylation in the placenta
and arsenic exposure in the New Hampshire Birth Cohort Study. Environ
Health Perspect 124(8):1253–1260, PMID: 26771251, https://doi.org/10.1289/
ehp.1510437.

Guo X, Chen X, Wang J, Liu Z, Gaile D, Wu H, et al. 2018. Multi-generational
impacts of arsenic exposure on genome-wide DNA methylation and the impli-
cations for arsenic-induced skin lesions. Environ Int 119:250–263, PMID:
29982128, https://doi.org/10.1016/j.envint.2018.06.024.

Haines BP, Rigby PWJ. 2008. Expression of the Lingo/LERN gene family duringmouse
embryogenesis. Gene Expr Patterns 8(2):79–86, PMID: 18297755, https://doi.org/
10.1016/j.modgep.2007.10.003.

Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, et al. 2013.
Chronic arsenic exposure and blood glutathione and glutathione disulfide con-
centrations in Bangladeshi adults. Environ Health Perspect 121(9):1068–1074,
PMID: 23792557, https://doi.org/10.1289/ehp.1205727.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson
HH, et al. 2012. DNA methylation arrays as surrogate measures of cell mixture
distribution. BMC Bioinformatics 13:86, PMID: 22568884, https://doi.org/10.1186/
1471-2105-13-86.

IARC Working Group. 2009. Arsenic, metals, fibres, and dusts. IARC Monogr Eval
Carcinog Risks Hum 100:11–465, PMID: 23189751.

Illumina. 2015. Infinium MethylationEPIC BeadChip Data Sheet.
Intarasunanont P, Navasumrit P, Waraprasit S, Chaisatra K, Suk WA, Mahidol C,

et al. 2012. Effects of arsenic exposure on DNA methylation in cord blood sam-
ples from newborn babies and in a human lymphoblast cell line. Environ Heal
11:31, https://doi.org/10.1186/1476-069X-11-31.

Joint FAO/WHO Export Committee on Food Additives. 1989. Toxicological Evaluation
of Certain Food Additives and Contaminants. Geneva, Switzerland: Cambridge
University Press.

Kaushal A, Zhang H, Karmaus WJJ, Everson TM, Marsit CJ, Karagas MR, et al.
2017. Genome-wide DNA methylation at birth in relation to in utero arsenic

exposure and the associated health in later life. Environ Health 16(1):50, PMID:
28558807, https://doi.org/10.1186/s12940-017-0262-0.

Khavari DA, Sen GL, Rinn JL. 2010. DNA methylation and epigenetic control of cel-
lular differentiation. Cell Cycle 9(19):3880–3883, PMID: 20890116, https://doi.org/
10.4161/cc.9.19.13385.

Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, et al.
2012. Prenatal arsenic exposure and DNA methylation in maternal and umbili-
cal cord blood leukocytes. Environ Health Perspect 120(7):1061–1066, PMID:
22466225, https://doi.org/10.1289/ehp.1104173.

Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G,
et al. 2014. Effect of prenatal arsenic exposure on DNA methylation and leuko-
cyte subpopulations in cord blood. Epigenetics 9(5):774–782, PMID: 24525453,
https://doi.org/10.4161/epi.28153.

Klug M, Schmidhofer S, Gebhard C, Andreesen R, Rehli M. 2013. 5-
Hydroxymethylcytosine is an essential intermediate of active DNA demethyla-
tion processes in primary human monocytes. Genome Biol 14(5):R46, PMID:
23705593, https://doi.org/10.1186/gb-2013-14-5-r46.

Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. 2013.
Differential DNA methylation in umbilical cord blood of infants exposed to low
levels of arsenic in utero. Environ Health Perspect 121(8):971–977, PMID:
23757598, https://doi.org/10.1289/ehp.1205925.

Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, et al. 1989. Familial
Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to
11p15.5. Am J Hum Genet 44:711–719, PMID: 2539717.

Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ, et al. 1990. The Strong
Heart Study. A study of cardiovascular disease in American Indians: design
and methods. Am J Epidemiol 132(6):1141–1155, PMID: 2260546, https://doi.org/
10.1093/oxfordjournals.aje.a115757.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28(6):882–883, PMID: 22257669, https://doi.org/10.
1093/bioinformatics/bts034.

Levey AS, Stevens LA, Schmid CH, Zhang Y(L), Castro AF, Feldman HI, et al. 2009. A
new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604,
PMID: 19414839, https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

Lim JC, Donaldson PJ. 2011. Focus on molecules: the cystine/glutamate exchanger
(System x(c)(�)). Exp Eye Res 92(3):162–163, PMID: 20488177, https://doi.org/10.
1016/j.exer.2010.05.007.

Liu Y, Hyde AS, SimpsonMA, Barycki JJ. 2014. Emerging regulatory paradigms in glu-
tathione metabolism. Adv Cancer Res 122:69–101, PMID: 24974179, https://doi.org/
10.1016/B978-0-12-420117-0.00002-5.

Liu X, Zheng Y, Zhang W, Zhang X, Lloyd-Jones DM, Baccarelli AA, et al. 2014. Blood
methylomics in response to arsenic exposure in a low-exposed US population. J
Expo Sci Environ Epidemiol 24(2):145–149, PMID: 24368509, https://doi.org/10.1038/
jes.2013.89.

Lurà MP, Gorlanova O, Müller L, Proietti E, Vienneau D, Reppucci D, et al. 2018.
Response of cord blood cells to environmental, hereditary and perinatal factors:
a prospective birth cohort study. PLoS One 13(7):e0200236, PMID: 29979752,
https://doi.org/10.1371/journal.pone.0200236.

McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL.
2016. Identification of polymorphic and off-target probe binding sites on the
Illumina Infinium MethylationEPIC BeadChip. Genom Data 9:22–24, PMID:
27330998, https://doi.org/10.1016/j.gdata.2016.05.012.

Miller RC, Brindle E, Holman DJ, Shofer J, Klein NA, Soules MR, et al. 2004.
Comparison of specific gravity and creatinine for normalizing urinary reproductive
hormone concentrations. Clin Chem 50(5):924–932, PMID: 15105350, https://doi.org/
10.1373/clinchem.2004.032292.

Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. 2013.
Association between exposure to low to moderate arsenic levels and incident
cardiovascular disease. Ann Intern Med 159:649–659, PMID: 24061511,
https://doi.org/10.7326/0003-4819-159-10-201311190-00719.

Moon KA, Oberoi S, Barchowsky A, Chen Y, Guallar E, Nachman KE, et al. 2017. A
dose–response meta-analysis of chronic arsenic exposure and incident cardio-
vascular disease. Int J Epidemiol 46(6):1924–1939, PMID: 29040626, https://doi.org/
10.1093/ije/dyx202.

National Research Council. 2013. Critical Aspects of EPA’s and IRIS Assessment of
Inorganic Arsenic, Interim Report. Washington, DC: The National Academies
of Sciences, Engineering, and Medicine.

Naujokas MF, Anderson B, Ahsan H, Vasken Aposhian H, Graziano JH, Thompson
C, et al. 2013. The broad scope of health effects from chronic arsenic expo-
sure: update on a worldwide public health problem. Environ Health Perspect
121(3):295–302, PMID: 23458756, https://doi.org/10.1289/ehp.1205875.

Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. 2011. Seafood intake and
urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the
US population. Environ Res 111(1):110–118, PMID: 21093857, https://doi.org/10.
1016/j.envres.2010.10.009.

Environmental Health Perspectives 067015-11 128(6) June 2020

https://doi.org/10.1289/ehp.1510209
https://www.ncbi.nlm.nih.gov/pubmed/21409388
https://doi.org/10.1007/s00726-011-0867-5
https://doi.org/10.1289/EHP3849
https://www.ncbi.nlm.nih.gov/pubmed/21118553
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1186/1471-2105-11-587
https://www.ncbi.nlm.nih.gov/pubmed/18796312
https://doi.org/10.1016/j.mam.2008.08.006
https://www.ncbi.nlm.nih.gov/pubmed/28035024
https://doi.org/10.1093/bioinformatics/btw691
https://www.ncbi.nlm.nih.gov/pubmed/20808728
https://www.ncbi.nlm.nih.gov/pubmed/18039032
https://doi.org/10.1371/journal.pgen.0030207
https://doi.org/10.1371/journal.pgen.0030207
https://www.ncbi.nlm.nih.gov/pubmed/23800676
https://doi.org/10.1158/1055-9965.EPI-13-0234-T
https://www.ncbi.nlm.nih.gov/pubmed/23732277
https://doi.org/10.1093/bioinformatics/btt311
https://doi.org/10.1093/bioinformatics/btt311
https://www.ncbi.nlm.nih.gov/pubmed/29947889
https://doi.org/10.1007/s00204-018-2239-3
https://doi.org/10.1007/s00204-018-2239-3
https://www.ncbi.nlm.nih.gov/pubmed/29373862
https://doi.org/10.1289/EHP2566
https://doi.org/10.1289/EHP2566
https://www.ncbi.nlm.nih.gov/pubmed/26771251
https://doi.org/10.1289/ehp.1510437
https://doi.org/10.1289/ehp.1510437
https://www.ncbi.nlm.nih.gov/pubmed/29982128
https://doi.org/10.1016/j.envint.2018.06.024
https://www.ncbi.nlm.nih.gov/pubmed/18297755
https://doi.org/10.1016/j.modgep.2007.10.003
https://doi.org/10.1016/j.modgep.2007.10.003
https://www.ncbi.nlm.nih.gov/pubmed/23792557
https://doi.org/10.1289/ehp.1205727
https://www.ncbi.nlm.nih.gov/pubmed/22568884
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://www.ncbi.nlm.nih.gov/pubmed/23189751
https://doi.org/10.1186/1476-069X-11-31
https://www.ncbi.nlm.nih.gov/pubmed/28558807
https://doi.org/10.1186/s12940-017-0262-0
https://www.ncbi.nlm.nih.gov/pubmed/20890116
https://doi.org/10.4161/cc.9.19.13385
https://doi.org/10.4161/cc.9.19.13385
https://www.ncbi.nlm.nih.gov/pubmed/22466225
https://doi.org/10.1289/ehp.1104173
https://www.ncbi.nlm.nih.gov/pubmed/24525453
https://doi.org/10.4161/epi.28153
https://www.ncbi.nlm.nih.gov/pubmed/23705593
https://doi.org/10.1186/gb-2013-14-5-r46
https://www.ncbi.nlm.nih.gov/pubmed/23757598
https://doi.org/10.1289/ehp.1205925
https://www.ncbi.nlm.nih.gov/pubmed/2539717
https://www.ncbi.nlm.nih.gov/pubmed/2260546
https://doi.org/10.1093/oxfordjournals.aje.a115757
https://doi.org/10.1093/oxfordjournals.aje.a115757
https://www.ncbi.nlm.nih.gov/pubmed/22257669
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://www.ncbi.nlm.nih.gov/pubmed/19414839
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://www.ncbi.nlm.nih.gov/pubmed/20488177
https://doi.org/10.1016/j.exer.2010.05.007
https://doi.org/10.1016/j.exer.2010.05.007
https://www.ncbi.nlm.nih.gov/pubmed/24974179
https://doi.org/10.1016/B978-0-12-420117-0.00002-5
https://doi.org/10.1016/B978-0-12-420117-0.00002-5
https://www.ncbi.nlm.nih.gov/pubmed/24368509
https://doi.org/10.1038/jes.2013.89
https://doi.org/10.1038/jes.2013.89
https://www.ncbi.nlm.nih.gov/pubmed/29979752
https://doi.org/10.1371/journal.pone.0200236
https://www.ncbi.nlm.nih.gov/pubmed/27330998
https://doi.org/10.1016/j.gdata.2016.05.012
https://www.ncbi.nlm.nih.gov/pubmed/15105350
https://doi.org/10.1373/clinchem.2004.032292
https://doi.org/10.1373/clinchem.2004.032292
https://www.ncbi.nlm.nih.gov/pubmed/24061511
https://doi.org/10.7326/0003-4819-159-10-201311190-00719
https://www.ncbi.nlm.nih.gov/pubmed/29040626
https://doi.org/10.1093/ije/dyx202
https://doi.org/10.1093/ije/dyx202
https://www.ncbi.nlm.nih.gov/pubmed/23458756
https://doi.org/10.1289/ehp.1205875
https://www.ncbi.nlm.nih.gov/pubmed/21093857
https://doi.org/10.1016/j.envres.2010.10.009
https://doi.org/10.1016/j.envres.2010.10.009


Navas-Acien A, Umans JG, Howard BV, Goessler W, Francesconi KA, Crainiceanu
CM, et al. 2009. Urine arsenic concentrations and species excretion patterns in
American Indian communities over a 10-year period: The Strong Heart Study.
Environ Health Perspect 117(9):1428–1433, PMID: 19750109, https://doi.org/10.
1289/ehp.0800509.

Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, et al. 2013. A
dose-response study of arsenic exposure and global methylation of peripheral
blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect
121(11–12):1306–1312, https://doi.org/10.1289/ehp.1206421.

Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V, Ilievski V, et al. 2015.
Sex-specific associations of arsenic exposure with global DNA methylation
and hydroxymethylation in leukocytes: results from two studies in Bangladesh.
Cancer Epidemiol Biomarkers Prev 24(11):1748–1757, https://doi.org/10.1158/
1055-9965.EPI-15-0432.

Nigra AE, Olmedo P, Grau-Perez M, O’Leary R, O’Leary M, Fretts AM, et al. 2019.
Dietary determinants of inorganic arsenic exposure in the Strong Heart Family
Study. Environ Res 177:108616, PMID: 31442790, https://doi.org/10.1016/j.envres.
2019.108616.

Niu L, Xu Z, Taylor JA. 2016. RCP: a novel probe design bias correction method for
Illumina Methylation BeadChip. Bioinformatics 32(17):2659–2663, PMID: 27153672,
https://doi.org/10.1093/bioinformatics/btw285.

Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. 2015. De
novo identification of differentially methylated regions in the human genome.
Epigenetics Chromatin 8(8):6, PMID: 25972926, https://doi.org/10.1186/1756-8935-8-6.

Phipson B, Maksimovic J, Oshlack A. 2016. missMethyl: an R package for analyzing
data from Illumina’s HumanMethylation450 platform. Bioinformatics 32(2):286–
288, PMID: 26424855, https://doi.org/10.1093/bioinformatics/btv560.

Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. 2016.
Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for
whole-genome DNA methylation profiling. Genome Biol 17(1):208, PMID:
27717381, https://doi.org/10.1186/s13059-016-1066-1.

Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. 2009. Folate defi-
ciency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of
leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ
Health Perspect 117(2):254–260, PMID: 19270796, https://doi.org/10.1289/ehp.
11872.

Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. 2007. Genomic
methylation of peripheral blood leukocyte DNA: influences of arsenic and fo-
late in Bangladeshi adults. Am J Clin Nutr 86(4):1179–1186, PMID: 17921400,
https://doi.org/10.1093/ajcn/86.4.1179.

Pochini L, Scalise M, Galluccio M, Indiveri C. 2014. Membrane transporters for the
special amino acid glutamine: structure/function relationships and relevance
to human health. Front Chem 2:61, PMID: 25157349, https://doi.org/10.3389/
fchem.2014.00061.

Powers M, Sanchez TR, Grau-Perez M, Yeh F, Francesconi KA, Goessler W, et al.
2019. Low-moderate arsenic exposure and respiratory in American Indian
communities in the Strong Heart Study. Environ Heal 18:104, PMID: 31779614,
https://doi.org/10.1186/s12940-019-0539-6.

Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. 2016. Sparse PCA
corrects for cell type heterogeneity in epigenome-wide association studies.
Nat Methods 13(5):443–445, PMID: 27018579, https://doi.org/10.1038/nmeth.
3809.

Ritchie M, Phipson B,WuD, Hu Y, Law C, ShiW, et al. 2015. limma powers differential
expression analyses for RNA-sequencing andmicroarray studies. Nucleic Acids
Res 43(7):e47, PMID: 25605792, https://doi.org/10.1093/nar/gkv007.

Robertson KD. 2005. DNA methylation and human disease. Nat Rev Genet 6(8):597–
610, PMID: 16136652, https://doi.org/10.1038/nrg1655.

Roh T, Steinmaus C, Marshall G, Ferreccio C, Liaw J, Smith AH. 2018. Age at exposure
to arsenic in water and mortality 30–40 years after exposure cessation. Am J
Epidemiol 187(11):2297–2305, PMID: 30084889, https://doi.org/10.1093/aje/kwy159.

Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, et al. 2015.
Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcy-
tosine alterations that predict functional changes in gene expression in new-
born cord blood and subsequent birth outcomes. Toxicol Sci 143(1):97–106,
PMID: 25304211, https://doi.org/10.1093/toxsci/kfu210.

Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, et al.
2012. Arsenic species and selected metals in human urine: validation of HPLC/
ICPMS and ICPMS procedures for a long-term population-based epidemiologi-
cal study. Anal Methods 4(2):406–413, PMID: 22685491, https://doi.org/10.1039/
C2AY05638K.

Schittek B, Sinnberg T. 2014. Biological functions of casein kinase 1 isoforms and
putative roles in tumorigenesis. Mol Cancer 13:231, PMID: 25306547,
https://doi.org/10.1186/1476-4598-13-231.

Shara NM, Wang H, Mete M, Al-Balha YR, Azalddin N, Lee ET, et al. 2012. Estimated
GFR and incident cardiovascular disease events in American Indians: The Strong
Heart Study. Am J Kidney Dis 60(5):795–803, PMID: 22841159, https://doi.org/10.
1053/j.ajkd.2012.06.015.

Smith AC, Choufani S, Ferreira JC, Weksberg R. 2007. Growth regulation, imprinted
genes, and chromosome 11p15.5. Pediatr Res 61(5 pt 2):43R–47R, PMID:
17413842, https://doi.org/10.1203/pdr.0b013e3180457660.

Smith AH, Marshall G, Roh T, Ferreccio C, Liaw J, Steinmaus C. 2018. Lung, bladder,
and kidney cancer mortality 40 years after arsenic exposure reduction. J Natl
Cancer Inst 110(3):241–249, PMID: 29069505, https://doi.org/10.1093/jnci/djx201.

Steinmaus C, Ferreccio C, Acevedo J, Balmes JR, Liaw J, Troncoso P, et al. 2016.
High risks of lung disease associated with early-life and moderate lifetime ar-
senic exposure in northern Chile. Toxicol Appl Pharmacol 313:10–15, PMID:
27725189, https://doi.org/10.1016/j.taap.2016.10.006.

Stiegel MA, Pleil JD, Sobus JR, Madden MC. 2016. Inflammatory cytokines and
white blood cell counts response to environmental levels of diesel exhaust
and ozone inhalation exposures. PLoS One 11(4):e0152458, PMID: 27058360,
https://doi.org/10.1371/journal.pone.0152458.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements
in the human genome. Nature 489:57–74, PMID: 22955616, https://doi.org/10.1038/
nature11247.

U.S. EPA (U.S. Environmental Protection Agency). 2018. Government Performance
and Results Act (GPRA) Tool-Submission Year Quarter 2018Q3, Violation Report.
https://obipublic.epa.gov/analytics/saw.dll?PortalPages&PortalPath=/shared/
SFDW/_portal/Public&Page=Violation [accessed 10 January 2019].

Voinescu GC, Shoemaker M, Moore H, Khanna R, Nolph KD. 2002. The relationship
between urine osmolality and specific gravity. Am J Med Sci 323(1):39–42,
PMID: 11814141, https://doi.org/10.1097/00000441-200201000-00007.

Wang L-X, Li Y, Chen G-Z. 2018. Network-based co-expression analysis for explor-
ing the potential diagnostic biomarkers of metastatic melanoma. PLoS One
13(1):e0190447, PMID: 29377892, https://doi.org/10.1371/journal.pone.0190447.

World Health Organization. 2011. Arsenic in Drinking-Water: Background Document
for the Development of WHO Guidelines for Drinking-Water Quality, Geneva,
Switzerland: World Health Organization, https://doi.org/10.1016/j.kjms.2011.05.002,
https://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf.

World Health Organization. 2012. Arsenic. WHO Fact Sheets. http://www.who.int/
mediacentre/factsheets/fs372/en/ [accessed 16 May 2016].

Zheng LY, Umans JG, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, et al.
2015. The association of urine arsenic with prevalent and incident chronic kid-
ney disease. Epidemiology 26(4):601–612, PMID: 25929811, https://doi.org/10.
1097/EDE.0000000000000313.

Environmental Health Perspectives 067015-12 128(6) June 2020

https://www.ncbi.nlm.nih.gov/pubmed/19750109
https://doi.org/10.1289/ehp.0800509
https://doi.org/10.1289/ehp.0800509
https://doi.org/10.1289/ehp.1206421
https://doi.org/10.1158/1055-9965.EPI-15-0432
https://doi.org/10.1158/1055-9965.EPI-15-0432
https://www.ncbi.nlm.nih.gov/pubmed/31442790
https://doi.org/10.1016/j.envres.2019.108616
https://doi.org/10.1016/j.envres.2019.108616
https://www.ncbi.nlm.nih.gov/pubmed/27153672
https://doi.org/10.1093/bioinformatics/btw285
https://www.ncbi.nlm.nih.gov/pubmed/25972926
https://doi.org/10.1186/1756-8935-8-6
https://www.ncbi.nlm.nih.gov/pubmed/26424855
https://doi.org/10.1093/bioinformatics/btv560
https://www.ncbi.nlm.nih.gov/pubmed/27717381
https://doi.org/10.1186/s13059-016-1066-1
https://www.ncbi.nlm.nih.gov/pubmed/19270796
https://doi.org/10.1289/ehp.11872
https://doi.org/10.1289/ehp.11872
https://www.ncbi.nlm.nih.gov/pubmed/17921400
https://doi.org/10.1093/ajcn/86.4.1179
https://www.ncbi.nlm.nih.gov/pubmed/25157349
https://doi.org/10.3389/fchem.2014.00061
https://doi.org/10.3389/fchem.2014.00061
https://www.ncbi.nlm.nih.gov/pubmed/31779614
https://doi.org/10.1186/s12940-019-0539-6
https://www.ncbi.nlm.nih.gov/pubmed/27018579
https://doi.org/10.1038/nmeth.3809
https://doi.org/10.1038/nmeth.3809
https://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1093/nar/gkv007
https://www.ncbi.nlm.nih.gov/pubmed/16136652
https://doi.org/10.1038/nrg1655
https://www.ncbi.nlm.nih.gov/pubmed/30084889
https://doi.org/10.1093/aje/kwy159
https://www.ncbi.nlm.nih.gov/pubmed/25304211
https://doi.org/10.1093/toxsci/kfu210
https://www.ncbi.nlm.nih.gov/pubmed/22685491
https://doi.org/10.1039/C2AY05638K
https://doi.org/10.1039/C2AY05638K
https://www.ncbi.nlm.nih.gov/pubmed/25306547
https://doi.org/10.1186/1476-4598-13-231
https://www.ncbi.nlm.nih.gov/pubmed/22841159
https://doi.org/10.1053/j.ajkd.2012.06.015
https://doi.org/10.1053/j.ajkd.2012.06.015
https://www.ncbi.nlm.nih.gov/pubmed/17413842
https://doi.org/10.1203/pdr.0b013e3180457660
https://www.ncbi.nlm.nih.gov/pubmed/29069505
https://doi.org/10.1093/jnci/djx201
https://www.ncbi.nlm.nih.gov/pubmed/27725189
https://doi.org/10.1016/j.taap.2016.10.006
https://www.ncbi.nlm.nih.gov/pubmed/27058360
https://doi.org/10.1371/journal.pone.0152458
https://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://obipublic.epa.gov/analytics/saw.dll?PortalPages&PortalPath=/shared/SFDW/_portal/Public&Page=Violation
https://obipublic.epa.gov/analytics/saw.dll?PortalPages&PortalPath=/shared/SFDW/_portal/Public&Page=Violation
https://www.ncbi.nlm.nih.gov/pubmed/11814141
https://doi.org/10.1097/00000441-200201000-00007
https://www.ncbi.nlm.nih.gov/pubmed/29377892
https://doi.org/10.1371/journal.pone.0190447
https://doi.org/10.1016/j.kjms.2011.05.002
https://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf
http://www.who.int/mediacentre/factsheets/fs372/en/
http://www.who.int/mediacentre/factsheets/fs372/en/
https://www.ncbi.nlm.nih.gov/pubmed/25929811
https://doi.org/10.1097/EDE.0000000000000313
https://doi.org/10.1097/EDE.0000000000000313

	Locus-Specific Differential DNA Methylation and Urinary Arsenic: An Epigenome-Wide Association Study in Blood among Adults with Low-to-Moderate Arsenic Exposure
	Introduction
	Methods
	Study Population
	Ethics
	Data Collection
	Urinary as Concentration
	Epigenome-Wide DNA Methylation Assessment and Quality Control
	Other Variables
	Statistical Analysis
	Evaluation of Previously Identified Signals

	Results
	Participant Characteristics
	Differentially Methylated Positions
	Sensitivity Analyses
	Elastic-Net Analysis
	Evaluation of Previously Identified Differentially Methylated Positions
	Differentially Methylated Regions
	GO Analysis

	Discussion
	Conclusions
	Acknowledgments
	References


