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a b s t r a c t

Background: Subthalamic (STN) and pallidal (GPi) deep brain stimulation (DBS) improve quality of life,
motor, and nonmotor symptoms (NMS) in advanced Parkinson’s disease (PD). However, few studies have
compared their nonmotor effects.
Objective: To compare nonmotor effects of STN-DBS and GPi-DBS.
Methods: In this prospective, observational, multicenter study including 60 PD patients undergoing
bilateral STN-DBS (n ¼ 40) or GPi-DBS (n ¼ 20), we examined PDQuestionnaire (PDQ), NMSScale (NMSS),
Unified PD Rating Scale-activities of daily living, -motor impairment, -complications (UPDRS-II, eIII, -IV),
Hoehn&Yahr, Schwab&England Scale, and levodopa-equivalent daily dose (LEDD) preoperatively and at
6-month follow-up. Intra-group changes at follow-up were analyzed with Wilcoxon signed-rank or
paired t-test, if parametric tests were applicable, and corrected for multiple comparisons. Inter-group
differences were explored with Mann-Whitney-U/unpaired t-tests. Analyses were performed before
and after propensity score matching which balanced out demographic and preoperative clinical char-
acteristics. Strength of clinical changes was assessed with effect size.
Results: In both groups, PDQ, UPDRS-II, -IV, Schwab&England Scale, and NMSS improved significantly at
follow-up. STN-DBS was significantly better for LEDD reduction, GPi-DBS for UPDRS-IV. While NMSS total
score outcomes were similar, explorative NMSS domain analyses revealed distinct profiles: Both targets
improved sleep/fatigue and mood/cognition, but only STN-DBS the miscellaneous (pain/olfaction) and
attention/memory and only GPi-DBS cardiovascular and sexual function domains.
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Conclusions: To our knowledge, this is the first study to report distinct patterns of beneficial nonmotor
effects of STN-DBS and GPi-DBS in PD. This study highlights the importance of NMS assessments to tailor
DBS target choices to patients’ individual motor and nonmotor profiles.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In patients with Parkinson’s disease (PD) an effective control of
pharmaco-refractory tremor or motor complications in advanced
disease stages may require a surgical therapy. Deep brain stimu-
lation (DBS) provides a safe means of improving motor [1] and
nonmotor symptoms (NMS) [2] as well as quality of life [3,4]. In
principal, several DBS targets may be considered, each with their
own advantages and disadvantages [5]. Subthalamic nucleus (STN)
DBS enables a reduction of dopaminergic medication, whereas
globus pallidus internus (GPi) DBS is more effective for the control
of dyskinesia [3,6].

As reviewed by Kurtis et al. [7], studies using clinical scales or
symptom-specific objective methods, show beneficial effects of
STN-DBS on a wide range of NMS, such as sleep [8], urinary
symptoms [9], gastrointestinal symptoms [10], olfaction [11],
pain [12], and neuropsychiatric aspects [13,14], such as depres-
sion and anxiety. Ramirez-Zamora et al. [15] and Wang et al. [16]
recently reviewed the current literature on target differences
between STN and GPi DBS in PD on NMS such as cognition, mood
and impulse control disorders. However, in contrast to the
wealth of evidence available for nonmotor effects of STN-DBS,
little is known about the effects of GPi-DBS on non-
neuropsychiatric, non-neuropsychological NMS. Closely con-
nected to this point, the differential effects of subthalamic and
pallidal stimulation on a wide range of NMS have not been sys-
tematically investigated yet. Therefore, using comprehensive
assessments with validated clinical scales, we explored NMS in
STN-DBS and GPi-DBS. We hypothesized that, similar to STN-DBS,
GPi-DBS has beneficial effects on the overall burden of NMS and
that there are, however, differences regarding specific aspects of
NMS for these two DBS targets.

Materials and methods

Design and ethical approval

This study was conducted as part of the DBS arm of the NILS
study [17], a multicenter, observational, international study inves-
tigating NMS in patients with advanced PD in three DBS centers
(ethical approval: Cologne master: 0012e145, German Clinical
Trials Register number: 00006735; Sao Paulo: FMUSPe13716,
1.172.993; London: National Research Ethics Service SouthEast
London REC3-10/H0808/141, 000010084). Results from the
apomorphine, levodopa infusion therapy, and STN-DBS arms have
previously been published [18,19]. All patients gavewritten consent
prior to study procedures. The study was carried out in accordance
with the Declaration of Helsinki.

Patients

PD diagnosis was based on the British Brain Bank criteria [20]
and screening for DBS indication was carried out according to
Movement Disorders Society guidelines [21]. As part of routine
clinical assessments, levodopa challenge tests were considered
satisfactory if >30% Unified PD Rating Scale (UPDRS)eIII
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improvement was observed. Patients did not undergo DBS treat-
ment if clinically relevant cognitive [60] and mood disorders were
found in multi-disciplinary assessments by specialized neuro-
psychologists and neuropsychiatrists. To guarantee informed
choice by patients, as per clinical routine, effect profiles of DBS
targets were discussed with patients based on these assessments
prior to surgery. Patients were informed about the possibilities of
preferential outcomes of DBS targets based on previous studies
and the experience of multi-disciplinary teams (e.g. STN-DBS for
medication requirements and GPi-DBS for neurocognition and
mood) [3].

Clinical assessment

Patients were assessed in the on-medication state (MedON) and
in the medication and stimulation ON state (MedON/-StimON) at
follow-up.

1) The Parkinson’s Disease Questionnaire (PDQ), an instrument
recommended by the Movement Disorders Society Scales
Committee [22] for quality of life assessments in patients with
PD, was collected. The 39-item PDQ and its abbreviated 8-item
version [23,24] have been used in DBS studies before. The two
versions consistently yield highly correlated results (r ¼ 0.96)
when converted to a Summary Index (PDQ-SI) [25]. We used
this method, as only the abbreviated PDQ was available for a
subset of patients (31/60). In all patients, the same PDQ version
was used in pre- and postoperative assessments. The PDQ SI
ranges from 0 (no impairment) to 100 (maximum impairment).

2) The UPDRS-I, eII, eIII, -IV, Hoehn and Yahr, and Schwab and
England scale were assessed for Mentation (range: 0e16), Ac-
tivities of daily living (ranging from 0 to 48), Motor impairment
(range: 0e108), Complications (range: 0e23), generalized mo-
tor dysfunction (range: 0e5), and ability to function in daily
living (range: 0e100%). Higher scores indicate higher impair-
ment in all scales, except for the Schwab and England Scale.

3) The NMS Scale (NMSS), a validated, well-established instru-
ment, was used to survey nine domains of NMS (cardiovascular,
sleep/fatigue, mood/cognition, perceptual problems/hallucina-
tions, attention/memory, gastrointestinal, urinary, sexual func-
tion, and miscellaneous consisting of items for pain, olfaction,
weight gain, and excessive sweating) [26]. The NMSS ranges
from 0 to 360 points and higher scores indicate higher NMS
impairment.

4) The levodopa equivalent daily dose (LEDD) was used to assess
medication requirements [27].
Statistical analysis

The assumption of normality was tested with the Shapiro-Wilk
method. Inter-group differences of baseline parameters between
the STN and GPi groups were analyzed with Mann-Whitney U-tests
or unpaired t-tests, if parametric tests were applicable. Intra-group
changes of outcome parameters from baseline to follow-up were
tested with Wilcoxon signed-rank or paired t-tests. Multiple
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comparisons, resulting from two DBS targets and the use of mul-
tiple tests, were corrected with Benjamini-Hochberg’s method to
balance out type I and type II errors [28]. Corrected p-values
adjusted to the significance threshold p < 0.05 are presented unless
stated otherwise. The magnitude of clinical responses were evalu-
ated with relative changes ([mean Testfollow-up e mean Testbaseline]/
mean Testbaseline) and Cohen’s effect size ([mean Testbaseline emean
Testfollow-up]/SD Testchange scores) [29]. Confidence intervals were
calculated for effect sizes based on noncentral t distribution [30].
Additionally, number needed to treat (NNT) were calculated ([1/
percentage of patients improving >½ SD Testbaseline). Explorative
Spearman correlations were calculated between change scores
from baseline to follow-up for PDQ-8 SI and all other outcome
parameters. Additionally, we explored correlations between
changes of LEDD (L-dopa and dopamine agonists) and all other
outcome parameters.

Furthermore, as our study included data from a real-life
observational study of NMS, we used propensity score matching
as a means to increase causal inference and minimize selection
bias. The aim here was to find subcohorts of patients undergoing
STN-DBS and GPi-DBS with accurately balanced preoperative
demographic and clinical characteristics. All analyses were con-
ducted with SPSS 24.0.0.0 (IBM Corp.) and Propensity Score
Matching for SPSS (version 3.04) by Thoemmes et al. [31]. Vari-
ables included for propensity score matching were baseline PDQ
SI, and NMSS total score, UPDRS-III MedON, and LEDD, and bal-
ance of covariates was tested for age at intervention, sex, UPDRS-I,
eII, eIII MedOFF, and -IV, and NMSS domains. Nearest-neighbor
matching with a 0.25 caliper [32] without replacement was con-
ducted employing a 1:2 ratio (GPi:STN). Balance diagnostics were
conducted based on Cohen’s effect size |d|<0.25 [32]. Subse-
quently, all analyses of clinical changes from baseline to follow-up
were also carried out for the thus identified matched cohort. Even
though the propensity score method was used to construct an
accurately matching cohort, acknowledging the possibility of
unknown confounders, we used independent samples tests for all
further statistical tests for comparisons between the STN-DBS and
GPi-DBS groups [33].
Results

Of the 75 consecutive patients with PD screened in our in-
patient departments between August 2013 and December 2014,
60 patients underwent STN-DBS or GPi-DBS and were included in
the final analysis (Fig. 1). In the STN-DBS group 40 patients (12
female) were aged 57.7 years ± 10.8 with 11.3 years ± 5.0 disease
duration. In the GPi-DBS group 20 patients (9 females) were aged
Fig. 1. Enrollment.
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56.6 years ± 9.8 with 11.4 years ± 3.9 disease duration. The median
Hoehn and Yahr was 2.0 (interquartile range: 2.0e2.5) in the STN-
DBS group and 2.5 (interquartile range: 2.0e3.0) in the GPi-DBS
group.

Propensity score matching resulted in amatched study cohort of
48 patients including 30 patients undergoing STN-DBS and 18 pa-
tients undergoing GPI-DBS (Table 1).

The results reported in this manuscript relate to the matched
cohort. In addition, outcome changes in the original cohort are
reported in the online supplementary tables e�1, e�2, e�3, and
e�4.

Baseline characteristics in the matched cohort

Diagnostic statistics indicated a good balance of demographic
and all main outcome parameters between the STN-DBS and GPi-
DBS groups of the matched cohort. Accordingly, no significant dif-
ferences were found for these parameters between the two groups.
Additionally, as we explored NMSS domains, post-hoc balance
diagnostic tests were also performed for these covariates and
revealed a good balance for all domains except for cardiovascular
symptoms and sexual function. As the NMSS domains were only
used for exploratory analyses and the NMSS total score, in which
the domains are summarized, was well balanced, this solution
seemed acceptable.

Changes of outcomes at follow-up in the matched cohort

In both groups, PDQ SI, UPDRS-II, UPDRS-IV, Schwab and En-
gland Scale, and NMSS improved significantly from baseline to
follow-up (all p < 0.02) (Table 2). As expected, LEDD reduction was
significant for STN-DBS (p < 0.001) and not significant for the GPi-
DBS group (p ¼ 0.325). Post-hoc analyses of NMSS domains (Fig. 2)
in the STN-DBS group resulted in significant improvements of
sleep/fatigue (p ¼ 0.017), mood/cognition (p ¼ 0.031), attention/
memory (p ¼ 0.035), and the miscellaneous domain (p ¼ 0.008)
driven by olfaction (baseline: 2.6 ± 3.6; follow-up 1.3 ± 3.4;
p ¼ 0.027). In the GPi-DBS group, cardiovascular (p ¼ 0.020), sleep/
fatigue (p ¼ 0.010), mood/cognition (p ¼ 0.001), and sexual func-
tion (p ¼ 0.042) improved at follow-up.

In the STN-DBS group, effect sizes were ‘large’ for LEDD and
‘moderate’ for UPDRS-II, -IV, and NMSS (Table 3). UPDRS-I and eIII
effect sizes were negligible and PDQ SI and Schwab and England
scale were ‘moderate’. In the GPi-DBS group, effect sizes were
‘small’ for UPDRS-I, Hoehn and Yahr scale, and LEDD reduction,
‘moderate’ for Schwab and England Scale and UPDRS-II, and ‘large’
for PDQ SI, UPDRS-IV, and NMSS. NNT results were favorable for
STN-DBS regarding LEDD reduction, UPDRS-I, and eIII (Table 4).
Conversely, they were better for GPi-DBS regarding UPDRS-II, -IV,
Hoehn and Yahr Scale, PDQ SI, and NMSS. NNT of Schwab and En-
gland Scale was balanced between both DBS targets.

A reduction of levodopa and of dopamine agonists was not
correlated to changes of outcome parameters in STN- and GPi DBS
(all p > 0.05).

Discussion

In this prospective, observational, international, multicenter
study, we observed significant beneficial effects of STN-DBS and
GPi-DBS on global NMS burden and specific aspects of NMS.

Motor disorder

In line with previous studies, motor outcomes, such as UPDRS-II,
-IV, and Schwab and England Scale improved significantly for both



Table 1
Demographic characteristics and outcome parameters at baseline in unmatched and matched cohorts.

Unmatched cohort p Matched cohort p

STN-DBS GPi-DBS STN-DBS GPi-DBS

n mean SD n mean SD n mean SD n mean SD

Age 40 57.7 10.8 20 56.6 9.8 0.709 30 58.5 12.4 18 58.1 9.1 0.896
Disease duration 40 11.3 5.0 20 11.4 3.9 0.938 30 10.4 5.6 18 11.0 4.0 0.708
Sex (female/male) [%] 40 (12/28) [30/70%] 20 (9/11) [45/55%] 0.251 30 (11/19) [36/63%] 18 (7/11) [39/61%] 0.878
PDQ SI 40 33.6 13.5 20 29.3 12.1 0.572 30 27.8 11.5 18 28.2 12.2 0.831
UPDRS-I 40 2.4 1.8 20 2.9 2.3 0.497 30 1.9 1.6 18 2.7 2.2 0.278
UPDRS-II 40 11.5 6.2 20 9.6 5.3 0.242 30 11.2 5.1 18 10.2 5.2 0.518
UPDR-III MedOFF 40 42.2 9.6 20 41.4 8.1 0.735 30 42.2 12.6 18 42.1 8.2 0.962
UPDRS-III MedON 40 19.5 8.6 20 14.2 7.7 0.023 30 16.0 7.0 18 15.2 7.4 0.728
UPDRS-IV 40 5.4 3.8 20 4.6 3.0 0.414 30 5.6 3.4 18 4.6 3.1 0.306
H&Y (median) [interquartile range] 40 (2.0) [2.0e2.5] 19 (2.5) [2.0e3.0] 0.186 30 (2.0) [2.0e2.5] 18 (2.0) [2.0e2.5] 0.551
S&E 40 83.8 8.1 20 83.0 9.2 0.760 30 84.7 6.8 18 82.2 9.4 0.285
LEDD 40 1195.6 459.4 20 1161.0 533.2 0.795 30 1164.1 449.2 18 1166.2 563.2 0.988
NMSS 40 61.4 36.5 20 61.5 25.8 0.535 30 49.8 30.3 18 58.8 24.2 0.144

Cardiovascular 40 1.2 1.8 20 2.0 2.9 0.478 30 1.2 2.1 18 2.1 3.0 0.317
Sleep/fatigue 40 13.7 8.9 20 14.5 7.4 0.520 30 13.1 10.1 18 13.3 6.8 0.536
Mood/cognition 40 9.6 12.6 20 12.5 13.8 0.347 30 7.8 10.0 18 11.7 14.3 0.421
Perceptual problems/hallucinations 40 1.2 3.4 20 1.0 2.8 0.870 30 0.5 2.2 18 0.9 2.9 0.703
Attention/Memory 40 4.1 5.7 20 4.5 4.0 0.178 30 3.1 4.1 18 4.1 3.1 0.099
Gastrointestinal 40 5.6 5.7 20 4.6 5.2 0.507 30 4.9 5.9 18 4.6 5.4 0.931
Urinary 40 9.4 9.3 20 6.0 5.3 0.225 30 7.6 7.9 18 6.4 5.3 0.966
Sexual function 40 5.1 8.3 20 6.3 5.0 0.051 30 3.0 5.6 18 5.6 4.8 0.010
Miscellaneous 40 11.6 7.5 20 10.4 8.4 0.418 30 8.7 6.3 18 10.1 7.9 0.669

Abbreviations: GPi-DBS ¼ Pallidal stimulation; H&Y ¼ Hoehn and Yahr Scale, LEDD ¼ levodopa equivalent daily dose; NMSS ¼ Non-motor Symptom Scale; PDQ SI ¼
Parkinson’s Disease Questionnaire Summary Index; S&E ¼ Schwab and England Scale; STN-DBS ¼ Subthalamic stimulation; UPDRS-I, -II, -III, and -IV ¼ Unified Parkinson’s
Disease Rating Scale-cognition, -activities of daily living, -motor impairment, and -motor complications.
Balance of covariates was assessed with Cohen’s d¼ (mean STN - mean GPi)/SD GPi. A good balance of covariates (Cohen’s d < 0.25) was found for all demographic parameters
and main outcomes. Post-hoc, balance diagnostics were additionally conducted for NMSS domains with good performance in all domains except for ‘Cardiovascular’ and
‘Sexual functions’. Uncorrected p values are presented for all comparisons of subthalamic and pallidal stimulation regarding demographic and clinical outcome parameters.

Table 2
Outcomes at baseline and follow-up in subthalamic and pallidal stimulation for the matched cohort.

STN-DBS GPi-DBS STN- vs.GPi-DBS

Baseline Follow-up Baseline Follow-up

n mean SD mean SD pa n mean SD mean SD pa pb

PDQ SI 28 28.8 10.8 20.9 12.6 28.2 12.2 16.7 8.9
UPDRS-I 28 2.0 1.7 1.7 1.3 0.401 17 2.7 2.2 1.9 1.5 0.188 0.643
UPDRS-II 28 11.3 5.3 9.4 5.9 0.014 17 10.4 5.2 5.9 4.9 0.014 0.071
UPDRS-III 25 15.9 7.2 14.2 7.8 0.325 17 15.3 7.6 16.4 9.9 0.681 0.329
UPDRS-IV 28 5.4 3.3 3.4 3.0 0.014 17 4.5 3.1 1.4 1.6 <0.001 0.259
H&Y 28 2.3 0.4 2.2 0.6 0.551 18 2.4 0.5 2.3 0.4 0.325 0.520
S&E 28 84.3 6.9 89.3 8.1 0.011 17 82.4 9.7 89.4 7.5 0.014 0.798
LEDD 26 1214.8 435.4 676.8 390.1 <0.001 18 1166.2 563.2 1029.5 526.4 0.325 0.008
NMSS 28 51.6 30.5 34.9 22.3 0.009 18 58.8 24.2 37.2 14.3 0.009 0.511

Cardiovascular 28 1.0 2.0 1.0 2.6 0.749 18 2.1 3.0 0.5 1.1 0.020 0.146
Sleep/fatigue 28 13.5 10.3 8.2 7.0 0.017 18 13.3 6.8 8.5 6.4 0.010 0.066
Mood/cognition 28 8.3 10.2 4.6 6.5 0.031 18 11.7 14.3 2.2 3.4 0.001 0.664
Perceptualproblems/hallucinations 28 0.5 2.3 0.3 0.9 0.336 18 0.9 2.9 0.3 0.7 0.461 0.509
Attention/memory 28 3.3 4.2 2.1 2.4 0.035 18 4.1 3.1 3.1 2.6 0.199 0.229
Gastrointestinal 28 5.1 6.1 4.4 6.6 0.146 18 4.6 5.4 4.5 5.9 0.925 0.451
Urinary 28 7.9 8.0 6.7 7.6 0.183 18 6.4 5.3 6.4 6.3 0.925 0.389
Sexual function 28 3.3 5.8 2.3 5.0 0.096 18 5.6 4.8 3.2 4.6 0.042 0.373
Miscellaneous 28 8.8 6.4 5.3 6.3 0.008 18 10.1 7.9 8.4 7.5 0.537 0.829

Abbreviations: GPi-DBS ¼ Pallidal stimulation; H&Y ¼ Hoehn and Yahr Scale, LEDD ¼ levodopa equivalent daily dose; NMSS ¼ Non-motor Symptom Scale; PDQ SI ¼
Parkinson’s Disease Questionnaire Summary Index; S&E ¼ Schwab and England Scale; STN-DBS ¼ Subthalamic stimulation; UPDRS-I, -II, -III, and -IV ¼ Unified Parkinson’s
Disease Rating Scale-cognition, -activities of daily living, -motor impairment, and -motor complications.

a Wilcoxon signed-rank test, respectively paired t-test, when parametric tests were applicable, with Benjamini-Hochberg correction for multiple comparisons due to
multiple outcome parameters and two DBS targets.

b Mann-Whitney U test, respectively unpaired t-test, when parametric tests were applicable, with raw p-values. After Benjamini-Hochberg correction only LEDD in the
unmatched cohort remained significant (p < 0.001).
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DBS targets [3,6,34]. As expected, LEDD reductionwas greater in the
STN-DBS group [3,35] and motor complications improved more in
1700
the GPi-DBS group [6]. These results were confirmed by effect size
and NNT.



Fig. 2. Non-motor Symptom Scale at baseline and follow-up in the matched cohort for subthalamic and pallidal stimulation.
Abbreviations: GPi-DBS ¼ Pallidal deep brain stimulation; STN-DBS ¼ Subthalamic stimulation.
Fig. 2 illustrates Non-motor Symptom Scale (NMSS) domains at baseline (blue) and follow-up (green) for the STN-DBS and GPi-DBS groups in (a) clustered box-plots and (b) radar
charts.
Significant intra-group improvements from baseline to follow are highlighted with black stars.
In Fig. 2a, outliers are represented by blue/green dots (2e3 SD), extreme outliers by small blue/green stars (>3 SD). In Fig. 2b, NMSS domain mean scores are presented as per-
centage of maximum domain scores. Bigger blue/green areas illustrate more severe NMS impairment.
In the STN-DBS group, beneficial effects were found for the NMSS domains sleep/fatigue, mood/cognition, attention/memory, and miscellaneous. In the GPi-DBS group, beneficial
effects were observed for the NMSS domains cardiovascular, sleep/fatigue, mood/cognition, and sexual function.
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Nonmotor symptoms

In accordance with previous studies, we observed an improve-
ment of global NMS burden in patients undergoing STN-DBS [36].
To our knowledge, the present study is the first to report similar
beneficial effects of GPi-DBS on global NMS. Additionally, as a novel
1701
observation, here we report beneficial effects of bilateral GPi-DBS
on a range of specific NMS, such as cardiovascular and sexual
function.

Few studies have compared NMS in STN-DBS and GPi-DBS [7].
Confirming results from previous studies, we observed an
improvement of sleep/fatigue for both, STN-DBS and GPi-DBS [6].



Table 3
Relative changes and effect sizes for the matched cohort.

Relative change Effect size (CI) Classification

STN-DBS GPi-DBS STN-DBS GPi-DBS STN-DBS GPi-DBS

PDQ SI �27.5 �40.9 0.53 (0.13e0.92) 0.86 (0.31e1.40) moderate large
UPDRS-I �15.0 �28.3 0.19 (�0.19e0.56) 0.36 (�0.14e0.85) e small
UPDRS-II �16.8 �42.9 0.55 (0.15e0.94) 0.76 (0.21e1.29) moderate moderate
UPDRS-III �10.8 7.3 �0.01 (0.00e0.05) 0.17 (�0.41e0.73) e e

UPDRS-IV �37.1 �70.1 0.56 (0.16e0.96) 1.09 (0.47e1.68) moderate large
H&Y �3.9 �5.7 0.14 (�0.23e0.51) 0.27 (�0.20e0.74) e small
S&E 5.9 8.6 0.67 (0.25e1.08) 0.72 (0.17e1.24) moderate moderate
LEDD �44.3 �11.7 1.19 (0.68e1.69) 0.27 (�0.20e0.74) large small
NMSS �32.4 �36.8 0.65 (0.24e1.06) 0.96 (0.39e1.51) moderate large

Cardiovascular 0.0 �76.3 0.00 (0.00e0.00) 0.62 (0.11e1.12) e moderate
Sleep/fatigue �39.2 �36.3 0.54 (0.14e0.94) 0.75 (0.22e1.27) moderate moderate
Mood/cognition �44.6 �81.4 0.34 (�0.04e0.72) 0.74 (0.21e1.25) small moderate
Perceptual problems/hallucinations �53.3 �68.8 0.17 (�0.20e0.54) 0.20 (�0.27e0.67) e small
Attention/memory �37.0 �24.3 0.40 (0.01e0.78) 0.27 (�0.20e0.74) small small
Gastrointestinal �12.7 �1.2 0.16 (�0.21e0.53) 0.01 (�0.45e0.47) e e

Urinary �14.9 0.9 0.22 (�0.16e0.59) 0.01 (�0.36e0.36) small e

Sexual function �28.6 �42.6 0.30 (�0.08e0.68) 0.52 (0.02e1.01) small moderate
Miscellaneous �39.8 �16.5 0.55 (0.15e0.95) 0.20 (�0.27e0.67) moderate small

Abbreviations: CI¼ confidence interval; ES¼ effect size; GPi-DBS¼ Pallidal stimulation;H&Y¼Hoehn and Yahr Scale, LEDD¼ levodopa equivalent daily dose;NMSS¼Non-
motor Symptom Scale; PDQ SI ¼ Parkinson’s Disease Questionnaire Summary Index; RC ¼ relative change; S&E ¼ Schwab and England Scale; STN-DBS ¼ Subthalamic
stimulation; UPDRS-I, -II, -III, and -IV ¼ Unified Parkinson’s Disease Rating Scale-cognition, -activities of daily living, -motor impairment, and -motor complications.
RC ¼ (mean Testfollow-up e mean Testbaseline)/Testbaseline.
ES ¼ (mean Testbaseline e mean Testfollow-up)/SD Testchange score.
ES: ‘small’ (0.20e0.49), ‘moderate’ (0.50e0.79), and ‘large’ (�0.80).
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Also in line with previous studies and guidelines on STN and GPi
DBS, based on the greater relative change and effect size, we
observed a better outcome of mood/cognition NMS in GPi-DBS
[3,37]. The data from the original cohort confirms results from
earlier studies on lower urinary tract symptoms in patients un-
dergoing STN-DBS and GPi-DBS which reported beneficial effects
only for STN-DBS [38,39], which in turn was also confirmed by
other studies including urodynamic examinations [9]. As a bene-
ficial effect of STN-DBS on urological symptoms was only observed
in the original cohort before matching, larger randomized studies
Table 4
Number needed to treat for the matched cohort.

Number neededto treat

STN-DBS GPi-DBS

PDQ SI 1.65 1.29
UPDRS-I 2.33 2.43
UPDRS-II 2.54 1.55
UPDRS-III 2.78 3.40
UPDRS-IV 2.54 1.55
H&Y 3.50 2.57
S&E 2.00 2.00
LEDD 1.30 3.00
NMSS 2.00 1.64

Cardiovascular 3.50 2.57
Sleep/fatigue 2.54 1.64
Mood/cognition 3.50 2.57
Perceptual problems/hallucinations 27.78 9.01
Attention/Memory 3.50 2.25
Gastrointestinal 4.00 5.99
Urinary 4.67 2.57
Sexual function 5.59 2.57
Miscellaneous 2.00 2.25

Abbreviations: GPi-DBS ¼ Pallidal stimulation; H&Y ¼ Hoehn and Yahr Scale,
LEDD ¼ levodopa equivalent daily dose; NMSS ¼ Non-motor Symptom Scale; PDQ
SI¼ Parkinson’s Disease Questionnaire Summary Index; S&E¼ Schwab and England
Scale; STN-DBS ¼ Subthalamic stimulation; UPDRS-I, -II, -III, and -IV ¼ Unified
Parkinson’s Disease Rating Scale-cognition, -activities of daily living, -motor
impairment, and -motor complications.
NNT ¼ (1/% of patients who improved > ½ SDbaseline) x 100.
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of urological outcomes are required to confirm these results.
Similarly, for perceptual problems/hallucinations, as significant
clinical improvements were observed before but not aftermatching
and larger randomized trials are required. The fact that an
improvement of perceptual problems/hallucinations was only
observed in the STN-DBS group may be closely connected to the
reduction of dopaminergic medication, which was approximately
50% in the STN-DBS group. This observation highlights, that mild to
moderate MedON hallucinations may be considered as a nonmotor
indication for STN-DBS rather than GPi-DBS as the LEDD reduction
may be particularly beneficial. The present work also confirms
previous studies which reported an improvement of pain [12] and
olfaction [11] in patients undergoing STN-DBS. Lastly, comparing
NMSS total scores, both DBS targets resulted in a significant
improvement of global NMS burden and no significant difference
was found between targets. However, the larger effect size and
smaller NNT may be an indicator that GPi-DBS could result in a
slightly advantageous global nonmotor outcome.

One has to acknowledge that NMS are defined by exclusion and
are the result of heterogeneous pathomechanisms [40,41]. There-
fore, there is a strong case for assessing motor features as well as
not only neuropsychological and neuropsychiatric NMS, but also a
wider range of nonmotor aspects of PD. The aim of this assessment,
e.g. with the validated, well-established NMSS used in this study, is
to provide a well-informed choice of DBS target (‘precision medi-
cine’) rather than the commonly used ‘one-size-fits-all’ approach
[5,42]. The particular salience of this point is also based on obser-
vations from previous studies that NMS have a stronger relative
importance for quality of life than motor examination as well as
motor complications [43].
Quality of life

Based on a greater relative change, larger effect size, and smaller
NNT in the matched GPi-DBS group, a slightly advantageous effect
on quality of life was observed for this DBS target. This is also in
accordance with a meta-analysis of previous comparative studies
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[44] which showed a 40% quality of life improvement after GPi-DBS
as observed in our study. The 25% quality of life improvement
observed in our STN-DBS group strikingly resembles results of a
randomized clinical trial by Deuschl et al. [4]. The underlying fac-
tors for a seemingly greater quality of life improvement in patients
undergoing GPi-DBS are not well understood and seem to be not
entirely explained by motor outcomes. Improvements of NMS and
activities of daily living seem to be closely connected to QoL
improvement. While the STN may still be the first choice as DBS
target in many centers, mainly because LEDD and frequency of
medication intake can be reduced to a greater extent, there is an
ongoing debate about the optimal DBS target. Finding the most
appropriate choice of DBS target based on individual profiles of
motor and nonmotor aspects of PD, may contribute to achieving
better quality of life outcomes.

Biological rationale

There are different mechanisms of action that may mediate the
observed motor and nonmotor effects of DBS:

1) Direct effect: In line with the concept of a functional tripartition
of the STN and the GPi [45], neurostimulation of specific sub-
regions of these target nuclei elicits differential effect profiles.
For example, studies have observed beneficial effects of neuro-
stimulation of the nonmotor parts of the STN on mood and
attention [41] or of the motor part of the GPi on motor impair-
ment [46].

2) Network effects in basal ganglia-thalamo-cortical loops: As ex-
amples for network effects, STN-DBS induces blood flow
changes in (1) cortex regions connected to the associative part of
the STN correlating to cognitive functions [47,48] or (2) fore-
brain cortical centers involved in urinary bladder control
correlating with voiding urge [9]. Furthermore, Cury et al. re-
ported that STN-DBS modulates glucose metabolism in (3) the
midbrain, cerebellum, and right frontal lobe correlating to
beneficial effects on olfactory functions [49]. Middlebrooks et al.
have reported beneficial effects of Globus pallidus externa
stimulation on sleep and discussed that this effect may be
mediated by pallido-thalamo-cortical loops crucial for the sleep
and wake states, e.g. via projections to the reticular thalamic
nucleus [50] which regulates local sleep [51]. However, the
network effects of pallidal stimulation have been studied less, in
particular for nonmotor outcomes [52].

3) Spread of current to regions in proximity of the target nuclei:
Beneficial effects of STN-DBS on, e.g., sleep may be associated
with a spread of current to neighbouring structures of the STN,
such as the pedunculopontine nucleus [53], which is located
approximately 5 mm ventral to the STN [54] and regulates the
sleep-wake cycle [55].

4) LEDD reduction can result in less side-effects of dopaminergic
medication, such as hallucinations, gastrointestinal symptoms
and somnolence. However, we observed no linear relationship
between LEDD total or LEDD of dopamine agonists in STN-DBS
or GPi-DBS or pooled data. Nonetheless, in particular in the
STN-DBS group, a postoperative reduction of LEDD below
patient-specific side-effect thresholds may be an important
contributing factor to the non-motor effects observed in this
study. The present study can only report “net effects” of neu-
rostimulation and reduction of dopaminergic medication and
future studies including larger cohorts are needed to distinguish
between these factors.

In summary, network modulation achieved by STN-DBS is
currently being researched intensively [41,56,57]. However, little is
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known about non-motor outcomes following GPi-DBS. Future
studies are needed to investigate a wide range of non-motor effects
of pallidal stimulation.
Limitations

Propensity score matching indicated a good balance of de-
mographic characteristics and clinical outcome parameters at
baseline [59]. However, one has to acknowledge that while this
method accounts for known outcome parameters/covariates of
analyses, thus minimizing selection bias, an unbalance of unknown
parameters cannot be ruled out. In our study, impulse control
disorders were not systematically assessed andmood and cognition
were only assessed with the corresponding sections of the UPDRS
and NMSS. Further studies including detailed assessments of these
specific factors are needed. While propensity score matching has
advantages as a method providing a ‘pseudo-randomization’ in
observational studies, it cannot replace a randomized clinical trial.
However, in certain scenarios, such as in our database, the real-life
use of treatment strategies may be of scientific interest and, here,
propensity score matching provides an accurate approach to in-
crease causal inference. An inclusion of a wide range of de-
mographic and clinical parameters in the matching procedure and
an implementation of strict comprehensive diagnostic statistics
increase the validity of our results as well as the power of our
statistical analyses. Although our cohort size was one of the biggest
in studies on NMS, it may still be considered rather small (original
cohort n ¼ 60 and matched cohort n ¼ 48). Even stricter matching
configurations, such as the use of a 0.1 caliper, or Cohen’s
d threshold |d| <0.1, would have resulted in even smaller cohort
sizes and were therefore not appropriate. As the present work
analyzed data from an observational study, we did not conduct
blinded assessments of clinical outcomes and the follow-up period
of 6 months was short. Comparing long-term nonmotor outcomes
for STN-DBS and GPi-DBS will provide a better understanding of
preferential DBS targets and further studies in randomized
controlled trials with longer follow-up periods are needed to
confirm the findings presented here. To help the interpretation of
our results, Cohen’s effect sizes were calculated to classify clinical
responses into ‘small’, ‘moderate’, and ‘large’. Although confidence
intervals of effect sizes were wide due to the relatively small cohort
size, this approach was chosen because an alternative method, the
minimal clinically important difference, to our knowledge, has not
been reported for the NMSS and its domains yet [58].
Conclusion

This is the first study to systematically investigate a wide range
of nonmotor aspects of PD in patients undergoing bilateral STN-DBS
and GPi-DBS. We observed beneficial effects of subthalamic and
pallidal DBS on global NMS burden and specific aspects of NMS.
Sleep/fatigue and mood/cognition improved in both DBS targets,
whereas distinct profiles were found for the attention/memory and
miscellaneous domains, which improved in the STN-DBS group,
and cardiovascular and sexual function domains, which improved
in the GPi-DBS group. This study highlights the importance of
comprehensive assessments of motor as well as nonmotor aspects
of PD in the preoperative screening for DBS to enable better
informed choices of DBS targets for individual patients. Imple-
menting these assessments in clinical practice, could provide pre-
cisely personalized patient care. Further prospective, randomized,
controlled trials reporting nonmotor outcomes for different DBS
targets and other treatment strategies are required to compare
their differential effects.
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DBS: deep brain stimulation
LEDD: levodopa equivalent daily dose
NMS: non-motor symptoms
NMSS: Non-motor Symptom Scale
NNT: number needed to treat
PD: Parkinson’s disease
PDQ-8 SI: 8-item PD Questionnaire Summary Index
QoL: quality of life
STN: subthalamic nucleus
UPDRS: Unified PD Rating Scale
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