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ABSTRACT
As long as critical levels of vaccination have not been reached to ensure heard immunity, and
new SARS-CoV-2 strains are developing, the only realistic way to reduce the infection speed
in a population is to track the infected individuals before they pass on the virus. Testing the
population via sampling has shown good results in slowing the epidemic spread. Sampling can be
implemented at different times during the epidemic and may be done either per individual or for
combined groups of people at a time. The work we present here makes two main contributions.
We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an
improved socio-demographic model which considers professions, as well as a more realistic
population mixing model based on contact matrices per country. These extensions are necessary
to develop and test various sampling strategies in a scenario including the 62 largest cities in
Spain; this is our second contribution. As part of the evaluation, we also analyze the impact
of different parameters, such as testing frequency, quarantine time, percentage of quarantine
breakers, or group testing, on sampling efficacy. Our results show that the most effective strategies
are pooling, rapid antigen test campaigns, and requiring negative testing for access to public
areas. The effectiveness of all these strategies can be greatly increased by reducing the number of
contacts for infected individual.

1. Social and epidemic models
The following tables show the different parameters used to configure the social model used by EpiGraph in our

experiments. It is important to highlight that these parameters are related to the demographic and social conditions
of each of the considered regions of Spain. In order to synthesize our results, we show the input parameters used for
the province of Madrid. A full detailed data of all the experiment will be available in the public data repository used
by EpiGraph and published upon the paper acceptation. The data was collected from the Spanish National Statistics
Institute (INE) [1]. The population pyramid (not shown in tables) was also collected from the INE for each Spanish
province.

Table 1 shows the percentage distribution of each collective and the sizes of the groups considered for each
collective. In Table 2 the work collectives are broken down by profession and include the industry, construction, catering
services, security, education, health, elderly care, and transportation. Note that some of the professions have specific
contact patterns, which are considered in the social model. More specifically, education and elderly care include static
contacts with students and elderly people at nursing home, respectively. For catering, security, and health we consider
dynamic contacts. Health professionals are also divided into front-line and non-front-line workers. Each one of these
two sub-collectives have different types of dynamic contacts. In Table 3 the elderly collective is broken down by
sub-collectives: elderly people at home, in day-care centres, and in nursing homes. Table 4 illustrates the family size
distribution used in our simulation. Note that this distribution is also different for each province.

Table 5 shows the list of parameters used to model the individual (i.e. agent). We distinguish between static
parameters - with constant values- and dynamic parameters - which may change during the simulation. The table
also indicates whether the parameter is used during the simulation. Tables 6 and 7 show the R0 values and transition
probabilities for each compartment state considered in the Epidemic model.
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Table 1
Social group distribution for the cities of Madrid province.

School groups
MinAge 0 MaxAge 19 Percentage 0.1757 %
MinSize 40 MaxSize 200 Percentage males 0.5108 %

Work groups
MinAge 20 MaxAge 64 Percentage 0.5179 %
MinSize 20 MaxSize 1000 Percentage males 0.4770 %

Stay-at-home, informal meetups groups
MinAge 20 MaxAge 64 Percentage 0.1194 %
MinSize 1 MaxSize 10 Percentage males 0.4770 %

Elder, informal meetups groups
MinAge 65 MaxAge 100 Percentage 0.1870 %
MinSize 25 MaxSize 50 Percentage males 0.3905 %

Table 2
Work collective breakdown in professions. Edu. and Elderly-CG stands for education professionals and elderly caregivers,
respectively. The percentages are the fraction of each profession among the worker collective. Sizemin and Sizemax denote
the minimum and maximum sizes of each specific collective. A normal distribution between these two values has been used
for setting each group size.

Industry Construction Catering Services Security Edu. Health Elderly-CG Transport
30.80% 6.50% 8.80% 24.00% 7.40% 7.50% 6.40% 3.30% 5.30%

Sizemin 1 1 1 1 10 6 10 5 1
Sizemax 30 20 12 8 50 30 30 25 8

Table 3
Elderly collective breakdown in classes. Elderly at home represents the elderly people that live at home and participate in
day centres (in our simulations, according to the existing conditions in Spain, day centres were closed during the simulation
period so this collective was merged with the elderly-at-home collective). The percentages are the fraction of each class
among this collective. Sizemin and Sizemax denote the minimum and maximum sizes of each specific collective. A normal
distribution between these two values has been used for setting each group size.

Elderly at home Elderly at day-care centre Elderly at nursing home
50.6% 46.3% 3.1%

Sizemin 4 10 10
Sizemax 10 30 40

Table 4
Family size distribution for the cities of the Madrid metropolitan area.

Number of members in a family
1 member 25.50 % 2 members 30.40 % 3 members 20.90 %
4 members 17.70 % 5 members 5.50 %
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Table 5
List of parameters used to model the agent. The column labelled T ype indicates whether the parameter is static or dynamic,
i.e. it has a constant value during the simulation or its value is may change. All these parameters are implemented but only
the used ones determine the infection outcome.

Parameter Type Comments Used
Age Static Individual age Yes
Gender Static Male or female No
Etnic group Static White, black, latino, asian, american indian, others No
Occupation Static Student, worker, elderly people or unemployed Yes
Occupation group Static Profession. See Table 2 Yes
Work on Saturday Static If true, the individual works on Saturdays Yes
Health condition Dynamic Factors than can increase the risk of severity synonym No
Mask use Dynamic Mask use, type of mask Yes
Quarantined Dynamic Isolation Yes
Vaccination type Dynamic Vaccine type: Pfizer-Biontech, Moderna, Astra-Zeneca or Janssen. Yes
Vaccination t1 Dynamic Vaccination time of the first dose Yes
Vaccination t2 Dynamic Vaccination time of the second dose Yes
Infection stage Dynamic If infectious, the infection stage related to the individual. See Table 7 Yes
COVID-19 variant Dynamic COVID-19 variant: Wuhan, British, E484K or Delta Yes
Infection t1 Dynamic Infection start time Yes
Infection t2 Dynamic Infection end time Yes
Sick time Dynamic Time that the individual was on bed because of the illness Yes
Seroprevalence Dynamic Prevalence to SARS-COV-2 Yes
Sequels Dynamic Infection sequels No
Test type Dynamic Testing method used Yes
Test time Dynamic Testing time Yes
Extra daily tests Static Extra PCR tests in the strategies Yes
Quarantine breakers Static Percentage of individuals that break quarantine time Yes
Test window Static Days for testing the same individual consecutively Yes

Table 6
R0 Values and transition probabilities for each compartment state. In this work we have not considered the use of antivirals,
thus ISV state is not reached and the associated RISV

0 value is not applicable. ES and A states do not have a related
transition probability because there is only a destination state. P AT represents the transition to asymptomatic for vaccinated
individuals. This probability is vaccination-dependant.

Compartment state R0 values Probability
EP REP

0 0 P A 25%
ES RES

O 1.42 100%
A RA

O 1.42 100%
IP RIP

O 4.5 P IS 100%
IS RIS

O 3.38 PH Table 7
ISV RISV

0 N/A 100%
H RH

0 0.34 PD Table 7
EP
T REP

0 0 P AT 25%
ES
T RES

O 0 or 1.42 100%
AT RA

O 1.1 or 1.42 100%
IPT RIP

O 0 or 4.5 P IS 100%
IST RIS

O 0 or 3.38 PH Table 7
HT RH

0 0 or 0.34 PD Table 7
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Table 7
Values of PH and PD are based on age. PH is the probability an infected person has of becoming hospitalized and PD is
the probability a hospitalized person (a fraction of the total infected) has of dying.

Age interval
< 10 10-19 20-29 30-39 40-49 50-59 60-69 70-79 ≥ 80

PH 0.4% 0.4% 3.4% 9.0% 19.6% 31.4% 40.8% 49.8% 45.2%
PD 0.0% 0.4% 0.8% 0.8% 1.2% 2.0% 4.7% 12.2% 30.0%

Table 8
R0 values for the vaccination-related states in each of the considered transmission scenarios.

State AT ES
T IPT IST HT

Non contagious 0 0 0 0 0
partially contagious 0 1.42 4.5 3.38 0.34
fully contagious 1.42 1.42 4.5 3.38 0.34

2. Sampling strategy time plots
Figures 1, 2 and 3 show the time plot of the different strategies. These figures represent the aggregated number of

existing infected individuals at a certain time. The simulated and real values are represented in blue and red colors,
respectively.

STRATEGY 1 STRATEGY 2

(a) (b)

Figure 1: Strategies 1 and 2 time plot. The simulated and real values are represented in blue and red colors, respectively.
(a) Baseline strategy. (b) Random testing strategy.
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STRATEGY 3 STRATEGY 4

(a) (b)

STRATEGY 5 STRATEGY 6

(c) (d)

STRATEGY 7 STRATEGY 8

(e) (f)

Figure 2: Strategies 3-8 time plot. The simulated and real values are represented in blue and red colors, respectively. (a)
Health, social-health, and defense workers testing strategy. (b) Catering workers testing strategy. The Y axis represents that
aggregated number of existing infected individuals at a certain time. (c) Infected family contacts quarantined strategy. (d)
All contacts of positive individuals are quarantined. (e) Pooling testing method. (f) Pooling testing method in catering
workers. The Y axis represents that aggregated number of existing infected individuals at a certain time. The simulated and
real values are represented in blue and red colors, respectively.
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STRATEGY 9 STRATEGY 10

(a) (b)

STRATEGY 11 STRATEGY 12

(c) (d)

Figure 3: Strategies 9-12 time plot. The simulated and real values are represented in blue and red colors, respectively. (a)
Testing campaign. (b) Testing campaign in catering workers. (c) Testing for leisure. (d) Ideal strategy. The Y axis represents
that aggregated number of existing infected individuals at a certain time. The simulated and real values are represented in
blue and red colors, respectively.
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3. Sensitivity analysis
This section tests the robustness of the results of EpiGraph in the presence of uncertainty in the input data. In this

study we analyse how the uncertainty in the input parameters used by EpiGraph may affect the results of the simulation.
3.1. Monotonicity analysis

In this section the we present the monotonicity analysis of the main model variables. We have considered the set
of parameters that we think are the most relevant in the simulation process. Most of these parameters are depicted
in Section 1 of the Supplementary Material. The considered parameters are: RES0 , RA0 , RIP0 , RIS0 , RH0 , �A, latent
secondary period, infected primary period, infection secondary period, hospitalization period, immunity workers
percentage, immunity students percentage, immunity unemployed percentage, immunity elderly percentage, initial
infected individuals, latent primary period, PCR tests per day, percentage of individuals who break quarantine , and
days of quarantine. Figures 4, 5 and 6 show the results of this analysis. Based on these results, the variables chosen for
carrying out the sensitivity analysis are: RES0 , RA0 , RIP0 , RIS0 , �A, immunity workers percentage, immunity students
percentage, immunity unemployed percentage, immunity elderly percentage, initial infected individual percentage,
percentage of individuals who break quarantine, and number of days of quarantine.
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Figure 4: Monotonicity analysis for parameters: (a) RES
0 , (b) RA

0 , (c) R
IP
0 , (d) RIS

0 , (e) RH
0 , (f) �

A, (g) latent secondary
period, and (h) infected primary period.
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Figure 5: Monotonicity analysis for parameters: (a) infectedt secondary period, (b) hospitalization period, (c) immunity
workers percentage, (d) immunity students percentage, (e) immunity unemployed percentage, (f) immunity elderly percentage,
(g) Initial infectives, and (h) LatentPrimaryPeriod.
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Figure 6: Monotonicity analysis for parameters: (a) PCR tests based on the simulated population, (b) Quarantine breakers,
and (c) Quarantine time.

3.2. LHS-PRCC analysis
In order to analyse the influence of the variables on the final result, a Partial Rank Correlation Coefficient analysis

is performed. Variables which do not present a monotone relation with the output variable - based on the monotonicity
analysis - were excluded from the PRCC analysis. Figure 7 shows the results of this analysis.
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Figure 7: Partial rank correlation coefficient analysis for variables: HighRiskAsymp (RA
0 ), HighRiskInfP (RIP

0 ), HighRiskInfS
(RIS

0 ), HighRiskLatentS (RES
0 ), Immunity elderly percentage, Immunity students percentage, Immunity unemployed

percentage, Immunity workers percentage, Initial percentage of infected individuals, LatentPrimaryToSecondary (�A),
QuarantineBreakers (QBreakers) and QuarantineTime (QTime).

4. Tukey analysis
This analysis is performed in order to identify the main differences among sampling strategies results. In a first

stage of this analysis, each of the strategies is simulated 10 times and the final percentage of infected population is
obtained using the average values. These values are shown in Table 9.
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Table 9
Results of 10 independent simulations for each sampling strategy. The last row of the table shows the average results for
each strategy.

Strategy 1 2 3 4 5 6 7 8 9 10 11 12
Test #1 6,09 6,05 6,56 6,55 4,92 2,25 4,48 6,29 2,27 6,68 4,10 0,39
Test #2 6,09 5,63 6,08 6,28 4,62 2,30 3,98 5,74 2,67 6,60 5,17 0,39
Test #3 6,36 6,26 6,07 6,01 4,78 2,25 4,49 5,37 2,56 6,43 4,35 0,39
Test #4 6,18 6,54 6,61 6,22 5,14 2,30 4,48 5,73 2,56 6,58 5,01 0,39
Test #5 6,14 6,53 6,03 6,23 4,90 2,23 3,91 5,98 2,47 6,23 4,56 0,39
Test #6 6,32 6,17 5,87 5,57 5,63 2,29 4,37 6,04 2,56 6,50 4,02 0,39
Test #7 5,78 6,08 6,49 6,34 4,71 2,28 4,59 6,15 2,39 7,03 4,98 0,39
Test #8 5,97 6,12 6,74 6,58 4,44 2,16 4,05 5,77 2,98 6,91 4,63 0,39
Test #9 5,64 6,26 6,31 5,67 5,05 2,18 4,39 5,93 2,29 6,60 4,60 0,39
Test #10 6,31 6,84 6,25 5,97 4,78 2,12 4,14 5,62 2,59 6,63 4,49 0,39
Mean 6,09 6,25 6,30 6,14 4,90 2,24 4,29 5,86 2,58 6,62 4,60 0,39

In order to find the mean square error, an Anova analysis is performed using the Matlab anova1 function shown in
Figure 8.

Figure 8: Matlab Anova analysis result of 10 independent simulations for each sampling strategy.

The Tukey criterion is defined by the following equation:

[ℎ!]T = q�(c, n − c)
√

MSE
ni

= 4.353
√

0.2465
120

= 0.6834 (1)

where
• q�(c, n − c) is the studentized range distribution
• c is the number of treatments
• n is the number of total samples
• MSE is the mean squared error (Anova)
• ni is the sample size of the treatments group

The Tukey analysis establishes that when the absolute mean differences between groups is less than the Tukey criterion
(T) there is not evidence to say that those groups are different. On the other hand, when the absolute mean differences
between groups is more than T, it can be said that the groups are different. The format of the results provided by the
Tukey analysis is depicted in Table 10, This table illustrates the absolute difference between group means.

Table 11 shows the Tukey analysis results for the considered sampling strategies. The results highlighted in green are
larger than the critical value of the Tukey criterion T=0.6834. This means that there is statistical significance between
the strategy results.
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Table 10
Table format for the Tukey analysis results.

Strategy 1 2 . . .
1 |x1 − x1| |x1 − x2|
2 |x2 − x1| |x2 − x2|
. . . . . .

Table 11
Tukey analysis results for the considered sampling strategies.

Strategy 1 2 3 4 5 6 7 8 9 10 11 12
1 0,00 0,16 0,21 0,05 1,19 3,85 1,80 0,23 3,50 0,53 1,49 5,70
2 0,16 0,00 0,05 0,11 1,35 4,01 1,96 0,39 3,66 0,37 1,65 5,86
3 0,21 0,05 0,00 0,16 1,40 4,07 2,01 0,44 3,72 0,32 1,70 5,91
4 0,05 0,11 0,16 0,00 1,25 3,91 1,85 0,28 3,56 0,48 1,54 5,75
5 1,19 1,35 1,40 1,25 0,00 2,66 0,61 0,97 2,31 1,72 0,29 4,51
6 3,85 4,01 4,07 3,91 2,66 0,00 2,05 3,63 0,35 4,38 2,37 1,85
7 1,80 1,96 2,01 1,85 0,61 2,05 0,00 1,57 1,70 2,33 0,31 3,90
8 0,23 0,39 0,44 0,28 0,97 3,63 1,57 0,00 3,28 0,76 1,26 5,47
9 3,50 3,66 3,72 3,56 2,31 0,35 1,70 3,28 0,00 4,04 2,02 2,19
10 0,53 0,37 0,32 0,48 1,72 4,38 2,33 0,76 4,04 0,00 2,02 6,23
11 1,49 1,65 1,70 1,54 0,29 2,37 0,31 1,26 2,02 2,02 0,00 4,21
12 5,70 5,86 5,91 5,75 4,51 1,85 3,90 5,47 2,19 6,23 4,21 0,00
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