Supplementary materials

HBM4EU chromates study - overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromium

Tiina Santonen¹, Simo P. Porras¹, Beatrice Bocca², Radia Bousoumah³, Radu Corneliu Duca^{4,5}, Karen S. Galea⁶, Lode Godderis^{5,7}, Thomas Göen⁸, Emilie Hardy⁴, Ivo Iavicoli⁹, Beata Janasik¹⁰, Kate Jones¹¹, Elizabeth Leese¹¹, Veruscka Leso⁹, Henriqueta Louro^{12,13}, Nicole Majery¹⁴, Sophie Ndaw³, Hermínia Pinhal¹², Flavia Ruggieri², Maria J. Silva^{12,13}, An van Nieuwenhuyse⁴, Susana Viegas¹⁵, Wojciech Wasowicz¹⁰, Ovnair Sepai¹⁶, Paul T.J. Scheepers¹⁷ and HBM4EU chromates study team

HBM4EU chromates study team:

Kukka Aimonen¹, Guillaume Antoine³, Rob Anzion¹⁷, Manuella Burgart³, Argelia Castaño¹⁸, Andrea Cattaneo¹⁹, Domenico Maria Cavallo¹⁹, Giuseppe De Palma²⁰, Flavien Denis³, Angela Gambelunghe²¹, Bruno Gomes^{12,13}, Ogier Hanser³, Riikka Helenius¹, Carina Ladeira¹⁵, Marta Esteban López¹⁸, Piero Lovreglio²², Philippe Marsan³, Mathieu Melczer³, Ana Nogueira¹², Elisabeta Pletea¹⁴, Katrien Poels⁵ Jouko Remes¹, Edna Ribeiro¹⁵, Sílvia Reis Santos¹², Françoise Schaefers⁴, Sally Spankie⁶, Robert Spoek¹⁴, Mohamed Rizki¹⁴, Davy Rousset³, Maurice van Dael¹⁷, Henna Veijalainen¹.

¹Finnish Institute of Occupational Health, Helsinki, Finland

² Istituto Superiore di Sanità, Rome, Italy

³French National Research and Safety Institute, Vandœuvre-lès-Nancy, France

⁴ Department of Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg

⁵ Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium

⁶Institute of Occupational Medicine (IOM), Edinburgh, EH14 4AP, UK

⁷IDEWE, External service for prevention and protection at work, Heverlee, Belgium

⁸Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

9Department of Public Health, University of Naples Federico II, Naples, Italy

¹⁰Nofer Institute of Occupational Medicine, Lodz, Poland

¹¹Health & Safety Executive, Buxton, SK17 9JN, United Kingdom

¹²National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon, Portugal

¹³Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal

¹⁴Service de Santé au Travail Multisectoriel (STM), Luxembourg

¹⁵NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600–560 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169–056 Lisbon, Portugal.

¹⁶Public Health England, London, UK

¹⁷Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands

¹⁸Instituto de Salud Carlos III, Madrid, Spain.

¹⁹ Department of Science and High Technology, University of Insubria, Como, Italy

²⁰Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy.

²¹Department of Medicine and Surgery, University of Perugia, Perugia, Italy

²²Interdisciplinary Department of Medicine, University of Bari, Bari, Italy.

Corresponding Author: Tiina Santonen (FIOH)

Finnish Institute of Occupational Health

PO Box 18

FI-00032 Työterveyslaitos, Finland

email. tiina.santonen@ttl.fi

Supplementary Table S1: Analytical methods for the analysis of Cr in the different matrices. All the laboratories had passed the HBM4UE quality assurance (QA) program for blood and urine Cr analysis. For EBC-Cr(VI) analysis internal interlaboratory comparison was set-up among the analyzing laboratories. No interlaboratory comparison was put in place under HBM4EU for industrial hygiene samples, but laboratories analyzing samples were either participating in external QA or had in-house quality control.

	Blood (RBC)	Urine	EBC-Cr(VI)	Air (Cr(VI))	Wipe
Belgium	ICP-MS	ICP-MS	- ^a	ICP-MS	ICP-MS
Finland	ICP-MS	ICP-MS	LC-ICP-MS	ICP-MS	ICP-MS
France	ICP-MS	ICP-MS	LC-ICP-MS	LC(IC)-UV/Vis	ICP-MS
Italy	ICP-MS	ICP-MS	IC-ICP-MS	ICP-MS	ICP-MS
Luxembourg	ICP-MS	ICP-MS	- ^a	ICP-MS ^c	ICP-MS
Poland	ICP-MS	ICP-MS	_d	ICP-OES/ICP-MS- HPLC	_a
Portugal	GFAAS	GFAAS	- ^a	UV/Vis	ICP-MS / IC
The Netherlands	ICP-MS	ICP-MS	micro-LC-ICP-MS ^b	ICP-MS / IC	ICP-MS / IC
UK	_a	ICP-MS	micro-LC-ICP-MS	ICP-OES ^c	ICP-OES

^a These samples were not collected or included in analysis. ^b Analysis carried out in UK.^c Only total Cr was analysed.

Abbreviations: ICP-MS, inductively coupled plasma - mass spectrometry; LC, liquid chromatography; IC, ion chromatography; UV/Vis, ultraviolet–visible spectrometry; GFAAS, graphite furnace atomic absorption spectrometry; ICP-OES, inductively coupled plasma - optical emission spectrometry.

	Belgium	Finland	Franc e	Italy	Luxembo urg	Poland	Portug al	The Netherla nds	UK	Total
	n	n	n	n	n	n	n	n	n	n
Bath plating workers	8	18	20	6	0	0	5	19	14	90
Chromate paint applications	15	0	0	4	0	1	32	0	0	52
Machining workers	9	2	19	0	0	0	5	0	3	38
Welders	28	25	18	38	16	51	3	0	16	195
Thermal spraying	0	5	0	0	0	0	0	0	0	5
Steel production	11	0	0	0	0	0	0	0	0	11
Maintenance and laboratory workers	0	0	1	0	0	0	5	1	1	8
All exposed workers	71	50	58	48	16	52	50	20	34	399
Within company controls	37	10	24	35	8	19	2	12	0	147
Out with company controls	0	16	0	0	0	0	25	0	15	56
All controls	37	26	24	35	8	19	27	12	15	203
All participants	108	76	82	83	24	71	77	32	49	602

Supplementary Table S2: Work distribution of the participants of the HBM4EU Chromates study by country.

	Cr analysis	Belgium	Finland	France	Italy	Luxembourg	Poland	Portugal	The Netherlands	UK	Total
Urine (exposed workers ^a / controls)	Cr	60 / 19	50 / 26	56 / 24	48 / - ^b	13/8	52 / 19	50 / 27	20 / 12	34 / - ^b	383 / 135
Blood (exposed workers / controls)	Cr	64 / 31	40 / 25	56 / 22	47 / 31	16 / 8	52 / 19	50 / 27	20 / 12	_b	345 / 175
EBC (exposed workers ^a / controls)	Cr(VI)/Cr(III)	_c	33 / 25	55 / 22	33 / 25	_b	_b	_c	20 / 11	34 / 15	175 / 98
Air Inhalable Outside RPE	Total Cr	26	41	4	33	6	50	_d	_d	18	178
	Cr(VI)	_d	34	43	33	_d	50	14	20	_d	194
Air Inhalable Inside RPE	Total Cr	2	10	_d	_b	6	1	_b	_b	16	35
	Cr(VI)	_d	3	7	_b	_d	1	_p	_b	_d	11
Air Respirable Outside RPE	Total Cr	20	41	_d	_b	5	_b	14	_d	18	98
	Cr(VI)	_d	34	37	_b	_d	_b	_d	20	_d	91

Supplementary Table S3: Total number of samples received from exposed workers and controls in each country disaggregated by sample type.

Wipes ^e	Total Cr	29	41	50	33	15	_b	45	20	34	267

^a Number of post-shift samples (number of pre-shift samples vary in some countries).

^b Samples not collected.

^c Although EBC samples were collected in Belgium and Portugal, they were not included in the data analysis due to quality concerns.

^d Not determined.

^e Number of workers sampled. Each worker provided 2-6 wipe samples each.