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of the uterine corpus. However, the molecular alterations that underlie these tumors are far from
being fully understood. The purpose of this study is to describe dysregulated molecular pathways
from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and
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both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway
analysis was performed to discover dysregulated pathways and/or proteins using different databases
and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external
cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified.
The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic
level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in
addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune
responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse
lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and
ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC.
These results could guide future research in this group of tumors.

Keywords: endometrial cancer; low grade; proteomics; pathways; SLIT/ROBO; necroptosis; ferroptosis;
immune microenvironment

1. Introduction

Endometrial carcinoma (EC) is the most frequently diagnosed gynecologic malignancy
in the European Union, with more than 73,000 new cases estimated to have been diagnosed
in 2020 [1]. Most patients with EC are diagnosed at early stages of their disease (80% in stage
I or II) and present as low-grade endometrioid endometrial carcinomas (EEC) [2]. Surgery
is the primary treatment for EC, followed by adjuvant radiotherapy or chemotherapy
depending on risk group stratification, which is mainly based on histology (endometrioid
vs non-endometrioid), tumor grade (grade 1-2 vs grade 3), depth of myometrial invasion
(<50% vs >50%), and the presence or absence of lymphovascular space invasion [34].
Although most patients have a favorable outcome, around 10% of them will progress with
local or distant relapses [2]. To date, systemic therapy has limited benefits in this subset of
patients, and its role is poorly defined in the adjuvant setting or after relapse [5].

A new molecular classification of EC has been proposed based on the genomic features
of the tumors [6]. Genetic alterations, such as POLE mutation, copy number alterations,
and microsatellite instability, can be used to classify EC and guide post-surgical adjuvant
treatment for women with more aggressive tumors. Proteomic analysis of EC has also
been used to identify potential diagnostic markers using endometrial tissue and uterine
lavage samples [7-9]. In addition, studies have revealed novel associations between protein
expression and the genomic profiles of tumors [10]. Most of these studies included the
endometroid and serous subtypes of EC, revealing major molecular differences between
these tumors.

Despite much progress in the understanding of endometrial tumor biology, there
is still a considerable lack of knowledge in the pathways that govern tumorigenesis of
low-grade, early-stage EEC. Filling this gap could enable the development of specific
therapies for different subsets of endometrial tumors. Little has been published about
the specific proteomic profile of low-grade, early-stage ECs, with most studies focusing
on isolated protein dysregulation [11-13] or the usefulness of proteomics in endometrial
cancer diagnosis [14].

In the present study, we aimed to characterize low-grade, early-stage EEC through
quantitative comparative analysis of the endometrial proteome from formalin-fixed paraffin-
embedded (FFPE) samples. We focus on previously undescribed pathways in the pathogene-
ses of EC which are dysregulated in EEC, and seem relevant for tumor biology. These new
findings could help to guide future research into therapeutic alternatives for these patients.

2. Results

The proteomics study comprised a discovery and a validation cohort. The discovery
set consisted of sixteen low-grade, early-stage EC formalin-fixed, paraffin-embedded
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(FFPE) tissue samples with paired healthy controls. As a validation cohort, proteomic data
from 11 tumor samples and 6 healthy controls were obtained from the CPTAC study [10].
An outline of our experimental design is depicted in Figure 1. Overall, 3112 proteins
were identified in the discovery set, and 9802 in the validation set with a global false-
discovery rate (FDR) below 1% (Table S1). Initially, as an explorative approach, principal
component analysis (PCA) and hierarchical clustering was carried out with the discovery
and validation set. Tumor and healthy tissue were clearly clustered according to their
proteomic protein expression profiles (Figure 2a and Figure S1). Using an FDR threshold of
5%, 572 (18.3%) proteins were differentially expressed in the discovery set, which resulted
in 854 identified pathways. In the validation set, there were 7775 (78%) differentially
expressed proteins that yielded 5856 pathways (Figure 2a). After matching pathways
identified in both cohorts, a total of 503 pathways were cross-validated in the discovery
and validation cohort. The mean number of proteins per pathway identified was 14.34 and
106.32 for the discovery set and the validation set, respectively.
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Figure 1. Experimental outline. FFPE: formalin-fixed, paraffin-embedded tissue. TMA: tissue
microarray. EC: endometrial cancer. FFT: fresh frozen tissue. IHC: immunohistochemistry. IF:
immunofluorescence.
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Figure 2. (a) PCA and volcano plots for the discovery and validation set. (b) Pathways identified in both cohorts segregated

according to biological function (cell signaling, immune response or others). La Paz: discovery cohort. CPTAC: Clinical

Proteomic Tumor Analysis Consortium, validation cohort.
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Additionally, the mean percentage of genes from each pathway identified in the
discovery and validation set was 11.56% and 51.86%, respectively.

Most of the cross-validated pathways were related to essential biological cell functions,
including cell metabolism, nucleic acid synthesis, and protein translation. Importantly,
pathways classically associated with the pathogenesis of EEC and general carcinogenesis
were robustly identified in our analysis, including MAPK signaling, DNA repair processes,
PI3K-Akt dysregulation, and steroid hormone receptor-associated pathways. These served
as positive internal control of our pathway discovery pipeline (Figure 2b).

We screened cross-validated pathways and selected the pathways related to cell sig-
naling, immune response and cell death to be subjected to further study. WNT pathways
and L1CAM interaction pathways were altered according to our proteomic analysis. We or-
thogonally validated the WNT pathway by measuring the proportion of (3-catenin nuclear
stain using immunohistochemistry (IHC) in a cohort of 265 patients with low-grade, early-
stage EEC. Out of 245 tumors evaluable for (3-catenin status, 26 (10.6%, 95% confidence
interval = 7.05-15.16%) showed nuclear 3-catenin expression (Figure 3b). Furthermore, our
proteomic analysis found 3-catenin protein to be up-regulated in both the discovery and
validation sets (Figure S2b). Moreover, HMGB3 (a chromatin binding protein involved in
the regulation of cell cycle through several mechanisms, including WNT pathway) [15,16],
was strongly up-regulated in our proteomic analysis, being the third most up-regulated
protein. A similar pattern was found in the validation cohort (Figure S2b). To further inves-
tigate this finding, we measured the mRNA levels of HMGB3 in tumor and paired healthy
tissue. In line with our proteomic findings, the mRNA levels of HMBG3 were up-regulated
in the tumor tissue. Although results were not statistically significant when analyzed as
independent cohorts, most paired samples (7 out of 10) showed increased HMGB3 expres-
sion at the intra-subject level (Figure 3c). In order to ascertain the presence of LICAM in
EEC, we measured the expression of this protein by IHC, revealing membranous positivity
in 13 out of 213 tumors analyzed (6.1%, 95% confidence interval = 3.29-10.21%) (Figure 3b).
The SLIT/ROBO signaling pathway was one of the most robustly identified dysregulated
pathways, with more than 20% of pathway-related proteins and more than 25 proteins
identified in the discovery cohort (Figure 2b and Figure S2a). Similar results were obtained
in the validation set. To further validate our proteomic findings, we measured SLIT2 and
ROBO2 mRNA levels, which are the main ligand and receptor of the SLIT/ROBO signaling
pathways, respectively, and are widely expressed outside the central nervous system. In
line with our proteomic findings, results of the mRNA analysis showed up-regulation of
the ROBO2 receptor with concomitant down-regulation of the SLIT2 ligand in tumor tissue
compared to healthy paired tissue (Figure 3d). In addition, this transcriptomic analysis
was consistent with individual protein measures in the validation cohort, also showing
SLIT2 down-regulation with concurrent ROBO2 up-regulation (Figure 3f). Furthermore,
all SLIT/ROBO pathway-associated proteins identified in the discovery cohort showed a
pattern of up-regulation in tumor tissue (Figure S2a).

Additionally, several pathways associated with cell death were detected in our pro-
teomic analysis. Aside from apoptosis related pathways, which are frequently dysregulated
in malignancies, we identified necroptosis and ferroptosis as potential cell death pathways
altered in low-grade, early-stage EEC (Figure S2c). We further explored this finding, an-
alyzing CFLAR mRNA levels in low-grade, early-stage EEC and healthy paired tissue.
CFLAR encodes cFLIP, a protein which acts as a negative regulator of necroptosis. As
expected, CFLAR levels were down-regulated in the tumors (Figure 3e). Furthermore,
necroptosis-associated effector proteins RIPK1, RIPK3 and MLKL, identified in the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) validation cohort, were all up-regulated
in the tumors, in line with our transcriptomic findings (Figure 3f). Assessment of the expres-
sion pattern of key ferroptosis regulatory proteins obtained from the proteomic data of the
LAPAZ and CPTAC cohorts provided additional evidence supporting pathway dysregula-
tion. Proteins associated with ferroptosis suppression, such as the glutathione-dependent
lipid antioxidant (GPX4) and the glutathione synthetase (GSS), were both up-regulated in
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tumors compared to healthy tissue. This pattern of expression was also found for these
individual proteins in the discovery set proteomic analysis (Figure S2d). In addition, the
newly characterized ferroptosis suppressor AIFM2 (also known as ferroptosis suppressor
protein 1, FSP1) was also up-regulated in the tumors. Moreover, the transferring recep-
tor 1 protein (TFRC), involved in the homeostasis of intracellular free iron, a key factor
triggering ferroptosis, was also up-regulated in tumor tissue. These findings support the
existence of alternative cell death pathways other than apoptosis in low-grade, early-stage
EEC. These key pathway proteins were also differentially expressed after correcting for
multiple comparisons (Figure S3). Inmune response-related pathways identified by our
proteomic analysis were consistent with diverse immune cell infiltrates, including a variety
of cytokines and immune cell-related pathways. Among these, the most robustly identified
pathways were associated with innate immune response, including neutrophil activation
and myeloid differentiation. Routes related to adaptive immune response such as TCR
signaling, MHC class II antigen presentation, and INF-gamma were also detected, albeit
with variable proportion between discovery and validation cohorts. In order to validate
these results, we measured the immune densities of CD8 positive cytotoxic T cell and CD68
positive myeloid cell populations in 15 cases of healthy uterine tissue. Both cell populations
were scarce, with median values of CD8 and CD68 cells per mm? of 14.1 and 0, respectively
(Figure 4a).
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Figure 3. (a) Representative images of IHC evaluation. (b) Proportion of cases positive for nuclear $-catenin and LICAM.

Error bars denote 95% CI. (c—e) mRNA expression levels for relevant transcripts. The y-axis represents target mRNA

expression relative to housekeeping. n = 10, two technical replicates. Bars represent mean and 95% CI. Grey lines connect

paired tumor and healthy samples. (f) Relevant pathway member individual protein expression in the validation cohort.

11 tumor samples and 6 healthy tissue controls. IHC, immunohistochemistry. ** = p < 0.001, *** = p < 0.0001.

Then, multiplexed quantitative analysis was used to determine the CD8+ T cell and
CD68 densities in low-grade, early-stage EEC using very well characterized and clinically
annotated tissue microarrays (TMAs) (see Methods). The analysis of 230 spots from
162 patients revealed a significantly higher infiltration of CD68+ macrophages and CD8
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T cells compared to healthy uterine tissue. Overall, the median CD68 and CDS8 positive
cells per mm? was 77.72 and 96.37, respectively. The immune cell infiltrates were more
prominent in the tumor stroma than in the tumor epithelium (Figure 4a,b). Additionally,
we appreciated high heterogeneity in the ratio of CD68 to CD8 cells (Figure S4a). Overall,
the median CD68/CD8 Log?2 ratio was —0.64, revealing a dominance of CD8 infiltrates.
However, interquartile range revealed great variability (2.37), with p25 and 75 being —1.68
and 0.68, respectively. In an effort to determine the association between the immune cell
densities of lymphoid and myeloid cell markers, we performed Spearman correlation
analysis. We found that CD8+ T cell densities were moderately correlated with the myeloid
cell marker CD68 (Spearman’s rank-order correlation; r = 0.38; p < 0.001) (Figure S4b).

HEALTHY TUMOR

1000+

7504

500+ CD68
cDs

1 ! 2504

4 0 4

cD68 cDs TOTAL TOTAL INTRA- INTRA- STROMA STROMA
TUMORAL  TUMORAL

Healthy Tumor

Figure 4. (a) Violin plots of cell density per spot. Healthy tissue graphs are scaled up to 100/mm? and up to 1000/ mm? for
tumoral tissue. Red spot denotes the median. (b) Representative microphotographs of immune infiltrates in healthy and
tumor tissue. CD8, CD68 and Cytokeratin are represented by red, yellow, and cyan, respectively.

3. Discussion

In the present study, we have focused on the proteomic differences between low-grade,
early-stage EEC and their healthy tissue counterpart. Previous studies have provided
relevant insight into the molecular features of EC, revealing different molecular subtypes
that correlate with clinical outcomes [6]. Proteogenomic analyses of endometrial tumors
have yielded interesting correlations between driver mutations, protein expression, and
histone methylation profiles, and have also revealed immune response heterogeneity
among tumors [10]. However, none of these studies have focused on the specific subtypes
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of endometrial carcinoma, mostly reflecting differences between biologically divergent
neoplastic processes. Our analysis of low-grade, early-stage EEC identified pathways
classically associated with endometroid tumors, such as PI3K-Akt and WNT pathways.
Our data support that up-regulation of these pathways plays a role in low-grade, early-
stage EEC. This is also in line with previous studies analyzing driver mutations in normal
endometrial glands, which described alterations in mitogen-activated kinases [17].

Interestingly, we have identified the SLIT/ROBO signaling pathway to be robustly
dysregulated in these tumors. Molecules acting in this pathway were first discovered as
regulators of axon growth [18]. They have been linked to cancer-associated processes such
as angiogenesis, cell migration, metastasis, and the regulation of leucocyte chemotaxis [19].
Interestingly, Pan-SLIT and ROBO1 immunohistochemical expression in EC has been linked
to increased recurrence rates [20]. In addition, SLIT2 deficient signaling has been associated
with a worse prognosis and increased risk of hematologic malignancy progression [21].
In this sense, point mutations, somatic copy number variations, and changes in gene
promoter methylation status have been described in genes associated with these pathways
in other malignancies, such as myelodysplastic syndromes and pancreatic cancer [21,22].
Importantly, other studies have identified similar patterns of ligand-receptor dysregulation,
with decreased SLIT2 and increased ROBO in tumors compared to healthy counterparts [23].
Moreover, selective deletion of SLIT2 in tumor cells in a murine tumor model caused
increased tumor metastatic potential [24]. In addition, the SLIT-2/ROBO axis has been
found to regulate (-catenin function, which may link SLIT/ROBO signaling to WNT
pathway dysregulation, which is commonly altered in EEC [23]. Our results warrant
further studies on the potential role of SLIT/ROBO as a therapeutic target and biomarker
for the prognosis of low-grade EEC.

In the present study, we found pathways classically associated with low-grade EEC
oncogenesis. [-catenin (CTNNBI), a key mediator of WNT pathway activation, was
mutated in a subset of low-grade EEC. In line with previous studies, we found that WNT
pathway activation is a feature of these tumors, where it is mediated by 3-catenin nuclear
translocation [25]. The fact that low prevalence of nuclear 3-catenin was detected in our
study has to be evaluated, considering the limited sensitivity of TMAs to score focally
expressed proteins. In addition, we report novel mechanisms that might regulate WNT
pathway activation in low-grade EEC, namely the SLIT/ROBO pathway (see above) and
HMGB3 overexpression. Interestingly, other groups have reported an association between
HMGB3 expression and adverse outcomes in all-type EC [26]. However, the prognostic
role of HMBGS3 in the specific subset of low-grade, early-stage EEC is still to be elucidated.

Evidence suggests that LICAM expression is a marker of worse prognosis in en-
dometrial cancer. LICAM expression is commonly observed in high-grade endometrial
tumors (including serous and clear cell carcinomas) and is associated with tumor vascular
invasion [27]. We have consistently identified LICAM pathway activation by proteomics
and IHC in our series of low-grade, early-stage EEC. Despite having detected LICAM
in a small subset of early-stage EEC, previous reports have associated the expression of
L1CAM protein in low-grade tumors with worse overall survival [28], which warrants
further study of this pathway in the biology of low-grade EEC.

Regulated cell death, a hallmark of cellular homeostasis, is frequently altered in neo-
plastic processes. Attention has been drawn to the diversity of cell death pathways in
health and disease; some of these cell-death programs may impair therapeutic approaches
or be exploitable for treatment purposes [29,30]. Of these, apoptosis and necroptosis were
the cell death-associated pathways more robustly identified in our study. Necroptosis is a
caspase-independent cell death mechanism that can be triggered by several stimuli, includ-
ing pattern recognition receptors, TNF signaling, metabolic stress, and chemotherapeutic
agents. The negative regulation of necroptosis has been associated with variable clinical
outcomes in patients with different cancer types [31]. The identification of necroptosis as a
type of cell death in low-grade, early-stage EEC could enable future therapeutic strategies
for these patients. Additionally, ferroptosis was also dysregulated in our analysis. This
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type of cell death is intimately associated with cell oxidative stress, derived from increased
metabolic activity. Notably, KRAS and BRAF mutant cell lines, as well as EGFR-expressing
cell lines, show increased susceptibility to ferroptosis [30]; we hypothesize that some of the
active oncogenic pathways in EC may also increase the cell oxidative stress. Furthermore,
reports suggest that peroxisomal activity in cancer cells may produce lipid intermediates
that act as substrates for ferroptosis [32]. Our results suggest that this increased suscepti-
bility to ferroptosis is quenched by the up-regulation of inhibitors such as GPX4, AIFM2
(FSP1) and GSS, which could potentially be targeted in low-grade EEC [33,34]. Further
supporting our results, increased MLKL and AIFM2 mRNA expression is associated with a
favorable prognosis in EC, according to the Human Protein Atlas [35].

Furthermore, necroptosis and ferroptosis are linked with immune response, because
these cell death processes release damage-associated molecular patterns (DAMPS) that
can be sensed by immune cells to amplify inflammatory responses. With the advent of
immunotherapy, there is increased awareness of the impact of immune microenvironment
in cancer behavior and clinical outcomes. Tumor-immune microenvironments differ across
EC subtypes, and show spatial and temporal heterogeneity [36]. Adaptative immunity
against tumor neo-antigens is supposed to drive sustained responses with current im-
munotherapies. However, the fact that most patients do not benefit from these therapies
suggests that other immune cell populations may play major roles in the tumor microenvi-
ronment. In the present study, aside from pathways associated with adaptative immunity,
we have robustly identified pathways related to innate immune activation. Our results are
in line with animal models and previous analyses of immune infiltrates in EC that have
demonstrated increased neutrophil infiltration in these tumors [37,38]. The role of innate
immune response in cancer biology is a field of growing interest, with contemporary stud-
ies suggesting a central role of macrophages in regulating anti-tumoral immune response
and the discovery of neutrophil recruitment by tumors to promote growth and metas-
tases [39—41]. On the other hand, some reports have demonstrated the down-regulation of
class 1 MHC molecule expression in EEC, as well as reduced CD8 expression in cytotoxic
tumor-infiltrating T cells, which could limit antigen presentation and adaptative immune
response [42,43]. These findings could partially explain the dominance of innate immune
response pathways over lymphocyte-associated pathways in our study. Our results high-
light the importance of innate immune cells in low-grade EEC, which may guide future
immunotherapy strategies in these specific tumor subtypes beyond current approaches
based on the PD1-PDL1 axis blockade [44].

Our study has several limitations that should be acknowledged. Firstly, our proteomic
pipeline was based on a limited number of FFPE tissue samples. Using an FFPE sample
as the protein source reduces the potential number of proteins identified. It is, therefore,
possible that relevant pathways could be undetected in this study. In addition, due to the
reduced number of patients included in the proteomic analysis, and the excellent outcome
of most of these patients, the clinical relevance of these pathways has not been explored.

4. Materials and Methods
4.1. Discover and Validation Cohort

As a discovery set (LA PAZ cohort), 16 FFPE tumor samples with paired healthy tissue
were selected from our archives. Inclusion criteria included patients with low-grade (grade
1 or grade 2), early-stage (International Federation of Gynecology and Obstetrics, FIGO
stages I or II) EEC, harboring a p53 wild-type protein expression pattern. Patients were
treatment-naive. Hematoxylin and eosin (H&E)-stained slides of each case were reviewed
by an expert pathologist who selected tumor areas and paired healthy tissue. Table 52
shows the clinicopathologic characteristics of the patients included in the study.

As a validation set (CPTAC cohort), MS data from healthy tissue and low-grade,
early-stage EEC samples were obtained from the CPTAC data portal (date of accession,
March 8, 2020). Data were obtained from two TMT-10 experiments that only included
tumor and healthy tissue from low-grade, early FIGO stage ECs. Eleven tumor samples
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were obtained. Of these, 6 had available paired healthy tissue. The experimental protocol
for the isolation of proteins in this cohort was carried out from fresh frozen tissue. Raw MS
spectra files were downloaded and analyzed as for the discovery set (see Data Analysis
below (Section 4.5)).

4.2. Protein Extraction and Processing

Tissue samples were sectioned using a microtome (7 pm thick), transferred into
1.5 mL tubes and deparaffinized by incubation with xylol for 30 min. After the addition of
methanol, samples were vortexed thoroughly and centrifuged for 2 min (15,000 rpm). The
supernatant was removed, and tissue samples were air-dried followed by resuspension in
RIPA buffer with protease/phosphatase inhibitors. Samples were boiled and sonicated,
followed by heating for 2 h at 80 °C (500 rpm). Samples were then reduced by adding
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) to a final concentration of 10 mM
and alkylated with iodoacetamide to a final concentration of 40 mM. Protein extracts
were cleaned and digested with the SP3 method, as described previously [45,46]. Briefly,
10 pL of SP3 bead stock (Sera-Mag SpeedBead carboxylate-modified magnetic particles;
GE Healthcare Life Sciences, Marlborough, MA, USA) for sample (or a 1:10 protein:bead
ratio for sections) and 200 pL acetonitrile (ACN; final concentration of 70%) were added
to 200 pL of protein extract and incubated for 10 min (1000 rpm). Tubes were mounted
on a magnetic rack; supernatants were removed, and beads were washed twice with 70%
ethanol and once with ACN (1 mL each). Beads were resuspended in 200 uL 200 mM
HEPES pH 8 and digested overnight with trypsin (1:25 trypsin:protein ratio for sections,
PierceTM trypsin protease, Thermo Scientific, Waltham, MA, USA; 37 °C, 500 rpm). The
next day, spinning down tubes were mounted on a magnetic rack and the supernatant was
recovered to a fresh 1.5 mL tube.

4.3. TMT Labeling

To analyze the discovery set, four TMT experiments were performed. TMT reagents
(0.8 mg) were dissolved in acetonitrile (40 uL), of which 20 uL was added to the peptides
(50 ng). Peptide quantification was performed by a QuBit fluorometer. Following incuba-
tion at room temperature for 1 h (500 rpm), the reaction was quenched with hydroxylamine
to a final concentration of 0.3% (v/v). TMT-labeled samples were pooled at a 1:1 ratio
across all 10 samples. For each experiment, the pooled sample was vacuum centrifuged to
near-dryness. Pierce High pH Reversed-Phase Fractionation Kits were used to fractionate
TMT-labeled digest samples into eight fractions by an increasing acetonitrile step-gradient
elution. Fractions were dried in a vacuum centrifuge and resuspended in 0.1% formic acid
prior to LC-MS analysis.

4.4. Liquid Chromatography and Tandem Mass Spectrometry

Peptide separations were carried out on an Easy-nLC 1000 nano system (Thermo
Scientific). For the analysis, the sample was loaded into a precolumn Acclaim PepMap
100 (Thermo Scientific) and eluted in an RSLC PepMap C18, 50 cm long, 75 um inner
diameter and 2 pm particle size (Thermo Scientific). The mobile phase flow rate was
300 nL/min using 0.1% formic acid in water (solvent A) and 0.1% formic acid and 100%
acetonitrile (solvent B). The gradient profile was set as follows: 3-7% solvent B for 5 min,
7-25% solvent B for 95 min, 25-60% solvent B for 14 min, 60-95% solvent B for 1 min,
and 95% solvent B for 5 min. Four microliters of each sample were injected. MS analysis
was performed using a Q-Exactive mass spectrometer (Thermo Scientific). For ionization,
2000 V of liquid junction voltage and 270 °C capillary temperature was used. The full
scan method employed a m/z 300-1800 mass selection, an Orbitrap resolution of 70,000 (at
m/z 200), a target automatic gain control (AGC) value of 3 x 10°, and maximum injection
times of 100 ms. After the survey scan, the 15 most intense precursor ions were selected for
MS/MS fragmentation. Fragmentation was performed with a normalized collision energy
of 27 and MS/MS scans were acquired with a starting mass of m/z 200, AGC target was
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10°, resolution of 35,000 (at 11/z 200), intensity threshold of 8 x 103, isolation window of
1.6 m/z units, and the maximum IT was 100 ms. Charge state screening was enabled to
reject unassigned, singly charged, and >7 protonated ions. A dynamic exclusion time of
30 s was used to discriminate against previously selected ions.

4.5. Data Analysis

Mass spectra were searched against all entries from the human UniProt Database
(downloaded: August 2019) using MaxQuant (version 1.6.8.0, Max Planck Institute of
Biochemistry, Martinsried, Germany) [47,48]. Trypsin/P was specified as a cleavage en-
zyme, allowing up to two missed cleavages and a mass tolerance of 20 ppm Orbitrap for
precursor ions and MS2 fragment ions. The product mass tolerance was set to 0.5 Da,
and a maximum of two missed tryptic cleavages were allowed. Carbamidomethylation of
cysteine was used as a fixed modification, with the oxidation of methionine and acetylation
of lysine residue used as variable modifications. A reverse nonsense version of the original
database was generated and used to determine the FDR, which was set to 1% for peptide
identifications. Reporter ion intensities were adjusted to correct for the isotopic impurities
of the different TMT reagents according to manufacturer specifications. Missing value
imputations were carried out from a normal distribution (width: 0.3, downshift: 1.8) using
Perseus software. The normalization of reporter ion intensities was carried with an internal
reference scaling (IRS) method [49]. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE [50] partner repository, with
the dataset identifier PXD022733 and 10.6019/PXD022733. Principal component analysis
(PCA) was performed using the FactoMineR v2.2 R package. Hierarchical clustering was
conducted using the Ward. D2 algorithm and taking Euclidean distance as similarity
metric. Differential gene expression was carried out using a t-test and the non-parametric
Wilcoxon test for independent samples. The resultant p-values were penalized with a
false discovery rate (FDR). A threshold of FDR < 0.05 was considered to include each
protein in further analyses. Given that both differential expressions yielded overlapping
results (with 94% of labeled proteins by Wilcoxon tests being also significant using the
t-test), we included proteins described by the non-parametric test in further analyses. To
perform pathway enrichment, Gene Ontology, Kegg pathways and Human Reactome
pathway databases were interrogated using Cytoscape (v3.7.2) and ClueGo (v2.5.6) [51,52].
Only differentially expressed proteins were included in the pathway analysis pipeline.
An FDR corrected pathway identification p-value of less than 0.15 in the discovery cohort
was required for pathway consideration. After independently analyzing the discovery
and validation cohorts, only cross-matched pathways were considered for further rounds
of validation.

Statistical analyses were performed using R (v4.0.1), and plots were generated using
the ggplot2 R package (v3.3.1) [53]. Correlations were calculated using the Spearman’s
ranked correlation method. To analyze individual protein differences, two-sided t-tests
with the Welch correction were calculated.

4.6. Real-Time Quantitative RT-PCR

Total RNA samples were isolated from representative FFPE tissue blocks from 10 low-
grade, early-stage primary EEC using a QIAGEN RNeasy Mini kit following the man-
ufacturer’s instructions and quantified by spectrophotometry. Quantitative real-time
polymerase chain reactions were performed in an Mx3005p (Agilent, Santa Clara, CA,
USA) using the SYBR® Green Quantitative RT-qPCR Kit (Merck, Darmstadt, Germany).
Expression of target RNAs was normalized using GADPH and PPIA genes as internal
controls [54]. A list of forward and reverse primers for SLIT2, ROBO2, HMG-B3 and CFLAR
can be found in Table S3. Results were analyzed, quantifying the target mRNA expression
in relation to housekeeping gene expression. The Wilcoxon test for independent samples
was used to calculate p-values.
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4.7. TMA Construction, Immunohistochemistry and Immunofluorescence

For TMA construction, representative non-necrotic central areas of each tumor were
marked on H&E slides. Two representative cores of 1.2 mm were obtained from the selected
areas of the paraffin block. The tissue cores were arrayed into a receptor paraffin block
using a tissue array (TMA) Workstation (Beecher instruments, Silver Spring, MD, USA), as
previously described [55]. A total of 265 patients had available tissue for TMA construction,
and 14 TMAs containing tumor tissue cores were constructed. TMA spots were considered
adequate for analysis if no detachments or staining artifacts were noted. Any spot not
fulfilling quality standards was not considered in further analyses. Complete description
of the cohort’s clinical characteristics can be found in a previously published article [55].

Immunohistochemistry (IHC) was performed by the Envision method (Dako-Agilent,
Glostrup, Denmark) in an automated Omnis platform (Dako-Agilent) with the following an-
tibodies: beta-catenin (mouse monoclonal, clone 3-catenin-1, Ready-to-use, Dako-Agilent),
L1CAM (mouse monoclonal, clone G-5, 1:100, Santa Cruz, USA), CD8 (mouse monoclonal,
clone C8/144B, Ready-to-use, Dako-Agilent) and CD68 (mouse monoclonal, clone KP-1,
Ready-to-use, Dako-Agilent). For beta-catenin, positive cases were considered if any nu-
clear staining was present in tumor cells in at least one of the cores evaluated. LICAM
membranous staining in >10% of tumor cells in any of the spots was considered positive.
Cytoplasmic staining was not considered. Immune infiltrates were quantified separately in
tumor and healthy tissue. To quantify immune infiltrates in tumor tissue, a subset of seven
TMAs from our low-grade, early-stage EEC cohort were selected. A total of 162 patients
providing 230 spots were included in the analysis. Multiplex immunofluorescence (IF) vali-
dation workflows and protocols have been implemented, as previously described [56,57].
Briefly, 4 pm sections of FFPE tissue from TMAs were deparaffinized, and antigen retrieval
was performed using heat-induced antigen retrieval with low pH (pH 6) or high pH (pH 9)
solutions. Samples were stained with primary antibodies targeting Cytokeratin (CK) (pan-
CK, clone AE1/AES3, dilution 1:150, Novus Biologicals), CD8 (clone 4B11, dilution 1:150,
Biorad), and CD68 (clone PG-M1, dilution 1/100, Dako) followed by TSA visualization
with fluorophores Opal 690, Opal 540, Opal 620 (Akoya Biosciences), respectively. All steps
were performed on the LabSat Research platform (Lunaphore Technologies, Lausanne,
Switzerland). This is an automated tissue-staining instrument for rapid immunostaining
which utilizes a microfluidic technology for the rapid and uniform delivery of reagents
to tissue samples, as previously described [58]. Each TMA section underwent several
sequential rounds of antibody staining. In the last round, nuclei were counterstained with
spectral DAPI (Akoya Biosciences), and sections were mounted with Faramount Aqueous
Mounting Medium (Dako).

Multiplexed immunofluorescence TMA slides were imaged using the Vectra® Polaris™
Automated Quantitative Pathology Imaging System (Akoya Biosciences, Menlo Park, CA,
USA). Tissue imaging, spectral unmixing, and phenotyping were performed using inForm®
Tissue Analysis Software (v2.4.8, Akoya Biosciences, Menlo Park, CA, USA).

Each TMA core was scanned and analyzed. For multi-spectral image analysis, a
spectral library from spectral peaks emitted by each fluorophore from single stained slides
was generated using InForm software (version 2.4.8, Akoya Biosciences) and used for the
spectral unmixing of multispectral images, allowing for the identification of all markers
of interest. Auto-fluorescence was determined on an unstained tumor core used in this
study cohort. Tissue and cell segmentations were performed using InForm software.
Tissue segmentation algorithms based on cytokeratin staining were used for the distinct
identification of tumor islands (tumor epithelium), stroma areas, and regions of non-
interest. Cell segmentation algorithms based on the expression of different markers, such
as the nucleus (DAPI), cytoplasm, or membrane, were used to accurately identify each
cell. Cell subpopulations were phenotyped in each TMA core, as: CD8+, CD68+, and CK+.
Cells negative for these markers were classified as other cell types. All phenotyping and
subsequent quantifications were performed blinded to the sample identity. A representative
example of the cell and tissue segmentation process is depicted in Figure S5.
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To assess immune infiltrates in healthy tissue, whole slides from 15 FFPE tissue blocks
from the non-tumoral tissue included in the proteomic analysis were selected and stained
for CD8 and CDé68. Slides were reviewed, and three representative spots of 0.6 mm of
diameter per slide were chosen to count positive cells. Counting was manually performed
at 20x magnification aided by an Olympus BX51 microscope equipped with a DP72
digital camera.

5. Conclusions

Using proteomics, we have identified novel dysregulated pathways in low-grade,
early-stage EEC. The SLIT-ROBO signaling pathway, which is important in tumor biology,
seems to play an important role in these tumors. We also found that the activation of previ-
ously undiscovered cell death pathways, such as necroptosis and ferroptosis, are present in
low-grade, early-stage EEC. Finally, we have profiled (at the proteomic level) the immune
microenvironment of these tumors, which is characterized by a high myeloid infiltration.

Supplementary Materials: The following are available online at https://www.mdpi.com /2072
-6694/13/4/794/s1. Figure S1: Hierarchical clustering for the discovery and validation cohort;
Figure S2: (a) Heatmap representing SLIT/ROBO pathway associated protein expression in the
discovery set. Samples are arranged according to Healthy/Tumor status. (b) HMGB3 and (3-catenin
protein expression in the discovery and validation set according to proteomic data. (c) Boxplots
representing necroptosis pathway-associated protein expression in the discovery set. (d) Boxplots
representing ferroptosis pathway-associated protein expression in the discovery set; Figure S3:
Volcano plot depicting differentially expressed proteins in the validation Set. Key proteins associated
with SLIT/ROBO, Ferroptosis and Necroptosis pathways are pointed out. Figure S4: Violin plots of
CD68/CD8 ratios and correlation between cell densities; Table S1: Excel file with protein identification
data for the discovery set (LAPAZ) and validation set (CPTAC); Table S2: Clinicopathological
variables of the discovery cohort; Table S3: List of primers used for transcriptomic validation;
Figure S5: Representative images of cell segmentation and phenotyping process (A-C) and tissue
segmentation algorithm (D).
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