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Abstract: Introduction: Human immunodeficiency virus (HIV) infection and cirrhosis are associated
with a senescent phenotype that decreases telomere length. We evaluated the impact of hepatitis C
virus (HCV) elimination on telomere length in patients with advanced HCV-related cirrhosis after
sustained virological response (SVR), with all-oral direct-acting antiviral agents (DAAs). Methods:
Prospective study of 60 HIV/HCV-coinfected and 30 HCV-monoinfected patients with advanced HCV
cirrhosis (liver decompensation or liver stiffness measurement (LSM) ≥ 25 kPa, hepatic liver pressure
gradient (HVPG) ≥ 10 mmHg, or Child–Pugh–Turcotte (CPT) ≥ 7). The relative telomere length (RTL)
was quantified by real-time multiplex PCR (MMqPCR) on peripheral blood mononuclear cells at
baseline and 48 weeks after HCV treatment. Generalized linear models (GLMs) adjusted for the most
relevant clinical and epidemiological variables and mixed GLMs were used. Results: In comparison
with HCV-monoinfected patients, HIV/HCV-coinfected patients were younger (p < 0.001), had lower
body mass index (BMI) (p = 0.002), and had been exposed less frequently to interferons (p = 0.011).
In addition, they were more frequently men (p = 0.011), smokers (p = 0.005), prior intravenous
drug users (IVDUs) (p < 0.001), and alcohol abusers (p = 0.005). RTL was significantly lower in
HIV/HCV-coinfected patients than in HCV-monoinfected patients, both at baseline (p < 0.001),
and at the end of follow-up (p = 0.032). A significant RTL increase over time was found only for
HIV/HCV-coinfected patients (p < 0.001), especially in those patients with compensated cirrhosis
(p < 0.001). Conclusion: HCV eradication with all-oral DAAs was associated with an increase in
telomere length in HIV/HCV-coinfected patients with advanced cirrhosis, particularly in compensated
patients. This finding suggests that HCV clearance may have implications in age-related conditions
in this population group.
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1. Introduction

Telomeres are repetitive nucleotide sequences at the end of chromosomes that protect against
genome instability. The absence or inhibition of reverse telomerase transcriptase activity leads to a loss
of a portion of the telomere with each cell division, until the length of the telomeres reaches a critical
size, inducing cell senescence and apoptosis. However, some dividing cells, such as lymphocytes,
express telomerase, which can slow or even reverse telomere shortening. Telomere length reflects
the replicative potential of cells, which decreases with age. It also is a predictor of mortality and
comorbidities in the general population and in people living with human immunodeficiency virus
(HIV) [1]. HIV promotes chronic immune activation, oxidative stress, inflammation, and an accelerating
loss of telomere length in immune cells during the acute and chronic phase of infection [2]. Telomere
reduction seems to occur from the first point of HIV infection, and may be maintained during HIV
infection without antiretroviral therapy (ART) [3,4]. There is evidence that ART and control of HIV
viremia have beneficial effects on telomere length [1]. However, most ART regimens contain nucleoside
reverse transcriptase inhibitors (NRTIs), which could inhibit telomerase activity [5].

Chronic hepatitis C (CHC) leads to a decrease in telomere length of T-cells, which seems to
be more related to the severity of liver disease than to the HCV infection itself [4,6,7]. In the liver,
hepatocyte telomeres are shorter in cirrhotic patients [8]. HCV promotes a high renewal rate of infected
hepatocytes, oxidative stress, and inflammation, which induces cellular senescence and fibrosis [9].
In blood, CHC is linked to T-cell exhaustion, characterized by telomere shortening [2]. Repetitive
antigenic stimulation encourages immune cells to divide, and the resulting decrease in telomere
length leads to CHC progression and the appearance of cirrhosis-associated immune dysfunction,
characterized by elevated immune activation, inflammation, and immunosuppression [10].

Pegylated interferon plus ribavirin (PR) has been the gold standard of hepatitis C virus (HCV)
therapy for many years, up until the introduction of direct-acting antivirals (DAAs). The new DAAs
have revolutionized HCV therapy, with excellent antiviral efficacy and very high cure rates, being safe
and effective in both HCV and HIV/HCV-coinfected patients [11]. The American Association form the
study of liver diseases and the Infectious Diseases Society of America (AASLD–IDSA) HCV guidance
recommends using the same general approach for treating HCV in patients with HCV monoinfection
and HIV/HCV coinfection, but notes the importance of considering potential drug interactions with
HIV antiretroviral medications [12]. Regarding the impact of DAA therapy on telomere size, telomere
elongation has recently been described in HCV-monoinfected patients with cirrhosis who reached
sustained virological response (SVR) after DAA treatment [11], but there is no evidence of telomere
elongation in HIV/HCV-coinfected patients after HCV eradication with DAAs.

Here, we aimed to evaluate the impact of HCV elimination with all-oral DAAs on telomere length
in HIV/HCV-coinfected patients with advanced, HCV-related cirrhosis.

2. Patients and Methods

2.1. Patients

We carried out a multicenter, prospective observational study on 90 patients with advanced
HCV-related cirrhosis from the ESCORIAL cohort (see Appendix A) who started anti-HCV therapy
with all-oral DAAs from January to December 2015. Samples were collected between January 2015 and
June 2016. The study was conducted in accordance with the Declaration of Helsinki; all patients gave
their written consent before enrollment, and the Research Ethics Committee of the Instituto de Salud
Carlos III approved the study (CEI PI 41_2014).
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The inclusion criteria were (1) plasma HCV RNA detectable by polymerase chain reaction (PCR);
(2) advanced cirrhosis, defined by (i) prior history of liver decompensation (ascites, bleeding esophageal
varices, hepatic encephalopathy), (ii) a Child–Pugh–Turcotte (CPT) score ≥7, (iii) liver stiffness ≥ 25 kPa,
or (iv) a hepatic liver pressure gradient (HVPG) ≥10 mmHg; and (3) starting HCV treatment with
all-oral DAAs. SVR was defined as an undetectable HCV RNA load 12 weeks after finalization of
anti-HCV therapy. HIV/HCV-coinfected patients were on stable combination antiretroviral therapy
(cART) for ≥6 months and had undetectable plasma HIV viral loads (<50 copies/mL). Hepatic
decompensation was defined by prior history of liver decompensation (ascites, bleeding esophageal
varices, or hepatic encephalopathy) or Child–Turcotte–Pugh (CTP) ≥ 7 at baseline.

Sixty HIV/HCV-coinfected and 30 HCV-monoinfected patients were included at baseline, of
which 45 HIV/HCV-coinfected and nine HCV-monoinfected patients completed the follow-up of the
study at 48 weeks after DAA treatment completion, and achieved an SVR. Of the 45 HIV/HCV-coinfected
patients with follow-up, 26 were compensated and 19 were decompensated at baseline (Figure 1).
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Figure 1. Flow chart of patient selection. Stratification according to decompensation is referred to at
the baseline.

In Spain, anti-HCV therapy is provided by hospital pharmacies and is covered by the National
Health System. The decision to administer anti-HCV therapy and selection of the adequate regimen
was taken by hepatologists or medical specialists in infectious disease at each institution.

2.2. Relative Quantification of Telomeres

Peripheral venous blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes,
and peripheral blood mononuclear cells (PBMCs) were isolated with Ficoll–Paque (GE Healthcare).
DNA was extracted with the DNA Purification System Kit (Promega Wizard).
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We performed a monochromatic multiplex real-time quantitative PCR (MMqPCR) assay for
relative telomere length (RTL), based on the work of Cawthon et al. [13] and modified for a LightCycler
480 instrument (Roche) by Hsieh et al. [14].

Briefly, each MMqPCR reaction was performed with 7.5 µL of GoTaq qPCR Master Mix (Promega)
with a final concentration of 1×, 0.15 µM of each of the four primers, 1 mM of dithiothreitol (DTT),
and 20 ng of DNA. The thermal cycling profile was initiated with 95 ◦C enzyme activation (hot-start)
incubation for 15 min. Next were two cycles of 94 ◦C for 15 s (2.2_C/s) and 49 ◦C for 15 s (2.2_C/s),
and then 35 cycles of 94 ◦C for 15 s, 62 ◦C for 10 s, (2.2_C/s), 74 ◦C for 15 s, 84 ◦C for 10 s, and 88 ◦C
for 15 s, with signal acquisitions at the end of the 74 ◦C and 88 ◦C stages. After cycling, a melting
curve program was run, starting with a 95 ◦C incubation for 1 min, followed by continuous acquisitions
every 0.2 ◦C from 45 ◦C to 95 ◦C (ramping at 0.11_C/s). All temperature ramping rates were set at
4.4_C/s or 2.2_C/s where indicated, except the melting curve, which was ramping at 0.11_C/s. The primer
sequences were as follows: Tel_F = 5′-ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-3′;
Tel_R = 5′-TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA-3′; HBB_F = 5′-CGGC
GGCGGGCGGCGCGGGCTGGGCGGcttcatccacgttcaccttg-3′; and HBB_R = 5′-GCCCGGCCCGCCG
CGCCCGTCCCGCCGgaggagaagtctgccgtt-3′. A standard curve was prepared from the DNA of a reference
sample (1301, lymphoblast cell line), with concentrations ranging from 0.74 ng to 82 ng, and it was run in
duplicate for each run, together with a negative control.

Fluorescence raw data was extracted for each amplicon, as previously described [14]. Fluorescence
was captured at the different dissociation temperatures of the two amplicons. However, as the
LightCycler instrument software does not allow dual-signal acquisition processing, several tools
were used in order to convert and process separate acquisition data from telomeric DNA (T)
and single copy genes (S) beta-globin, (HBB), as previously described by Hsieh et al. [14]. First,
data were exported from the LightCycler instrument software in text format and imported into
Microsoft Excel to split the 74 ◦C acquisition data from the 88 ◦C acquisition data. Subsequently,
acquisition-delineated data were converted into grid format with the LC480Conversion Program (LC480cp;
http://www.hartfaalcentrum.nl/index.php?main=files&fileName=LC480Conversion.zip&description=

LC480Conversion:%20conversion%20of%20raw%20data%20from%20LC480&sub=LC480Conversion).
Later, LinRegPCR [15] was used to perform baseline corrections and Ct calculations.

Subsequently, RTL was expressed as T normalized to the number of copies of S, obtaining a T/S
ratio [14]. On each plate, the standard curve was calculated for each product by averaging the raw Ct
values previously extracted. Ct values were plotted against the logarithm of the DNA concentration
on an X/Y scatter plot, and the linear trend line was generated together with the equation in the form
of y = ax + b, where y was the log (DNA) concentration value, a the slope, x the Ct value of each well,
and b the intercept. The linear DNA data was obtained with the equation: T or S = 10 ˆ (log (DNA)),
which allows us to obtain the T and S values for the telomere product and the single copy gene,
respectively. Each plate was normalized by the PCR efficiency of its standard curve. RTL was calculated
by dividing T by S (T/S). Subsequently, the RTL was averaged over the triplicates of each sample,
discarding values with a coefficient of variation greater than 0.15.

2.3. Statistical Analysis

For the descriptive study, categorical data were analyzed using the chi-squared test, and continuous
variables using the Mann–Whitney U test. The generalized linear model (GLM) was used to evaluate
the impact of HIV infection (HIV/HCV group vs HCV group) on the telomere length at baseline and
at the end of follow-up. This test provides the difference between groups as an arithmetic mean
ratio (AMR). GLM tests for independent groups were adjusted for the most relevant covariates,
which were selected by a stepwise algorithm (p < 0.2). The covariates used were age, sex, body mass
index, alcoholism, smoking status, IVDUs, previous HCV treatment, HCV genotype, statin treatment,
and decompensation.

http://www.hartfaalcentrum.nl/index.php?main=files&fileName=LC480Conversion.zip&description=LC480Conversion:%20conversion%20of%20raw%20data%20from%20LC480&sub=LC480Conversion
http://www.hartfaalcentrum.nl/index.php?main=files&fileName=LC480Conversion.zip&description=LC480Conversion:%20conversion%20of%20raw%20data%20from%20LC480&sub=LC480Conversion
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Moreover, mixed GLM with gamma distribution (log-link) is used to evaluate repeated measurements.
Our model only included two factors: group (HIV/HCV group vs HCV group; or HIV/HCV compensated vs
decompensated) and time (baseline vs final). The interaction between group and time was taken into account,
generating the statistical models as follows: (a) RTL ~ time (baseline vs final) + group (HIV/HCV-group vs
HCV-group) + (time × group) + (1 patient id); (b) RTL ~ time (baseline vs final) + group (decompensated vs
compensated-group) + (time × group) + (1| patient id) for HIV/HCV coinfected patients. For both models,
the id of the patient was evaluated as random effect. This test gives us the estimation of average RTL in
each one of the two factors analyzed.

The optimal sample size for repeated measures in each group was calculated according to the
GRANMO sample size calculator (https://www.imim.cat/ofertadeserveis/software-public/granmo/),
which established a minimum of 32 samples. Calculates were performed by using the following
parameters: standard deviation of differences of 0.02 and a minimum difference to detect of 0.01.

Statistical Package for the Social Sciences (SPSS) 22.0 (SPSS INC, Chicago, IL, USA) was used to
perform the statistical analysis. All p-values were two-tailed. The statistical significance was defined
as p ≤ 0.05.

3. Results

3.1. Patient Characteristics

Ninety patients started the ESCORIAL study (Figure 1), comprised of 60 HIV/HCV-coinfected
patients and 30 HCV-monoinfected. Forty-five HIV/HCV coinfected and nine HCV-monoinfected
patients completed the follow-up of the study.

Compares to the HCV-monoinfected patients, HIV/HCV-coinfected patients were younger
(p < 0.001), had a lower body mass index (BMI) (p = 0.002), and had been exposed less frequently to
interferons (p = 0.011). Also, HIV/HCV-coinfected patients were more likely to be men (p = 0.011),
smokers (p = 0.005), prior intravenous drug users (IVDUs) (p < 0.001), and alcohol abusers (p = 0.005).
Additionally, decompensated HIV/HCV-coinfected patients had higher baseline CTP scores (p = 0.039)
and lower HCV viral loads (p = 0.015) (Table 1).

NRTI regimens were used similarly in HIV/HCV-coinfected compensated or decompensated
patients (p = 0.104).

3.2. RTL Comparison between HIV/HCV-Coinfected and HCV-Monoinfected Patients

The RTL was significantly lower in HIV/HCV-coinfected than in HCV-monoinfected patients,
both at baseline (adjusted AMR (aAMR) = 0.60; 95% confidence interval (CI) = 0.46–0.77; p < 0.001) and
at 48 weeks after completion of HCV therapy (aAMR = 0.69 (95% CI = 0.49–0.97); p = 0.032) (Figure 2A;
Table 2). Significant variables at baseline were used for adjusting the model, where only sex, previous
HCV antiviral treatment, decompensation, and BMI remained as significant co-variates for comparison
at baseline, and decompensation and BMI for comparison at 48 weeks. We also explored the relation of
RTL with significant variables, such as alcohol intake and smoking status at baseline (p = 0.520 and
p = 0.359, respectively) and at 48 weeks after treatment (p = 0.888 and p = 0.177, respectively), but no
statistically significant differences were found.

https://www.imim.cat/ofertadeserveis/software-public/granmo/
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Table 1. Clinical and epidemiological characteristics of patients with advanced HCV-related cirrhosis, stratified by HIV coinfection.

All Patients HIV/HCV Patients
HIV/HCV HCV p Compensated Decompensated p

No. 60 30 35 25
Age (years) 51.7 (48.7–53.8) 58.5 (52.3–69.6) <0.001 51.6 (48.7–53.6) 52.1 (48.7–53.8) 0.887

Gender (male) 49 (81.7%) 17 (56.7%) 0.011 29 (82.9%) 20 (80.0%) 0.778
BMI (kg/m2) 23.8 (21.7–26.4) 27.7 (23.1–32.5) 0.002 23.8 (21.2–26.5) 23.5 (21.8–25.0) 0.705

Current smoker 38 (64.4%) 10 (33.3%) 0.005 22 (62.9%) 16 (66.7%) 0.764
Alcohol drinker (>50 g/day) 37 (61.7%) 9 (30%) 0.005 21 (60%) 16 (64.0%) 0.753

Previous IFNα therapy 23 (38.3%) 20 (67%) 0.011 12 (34.3%) 11 (44.0%) 0.445
HCV antiviral therapy

NS5B 0 (0%) 1 (3.3%) 0.079 0 (0%) 0 (0%) 0.075
NS5A + NS5B 40 (66.7%) 13 (43.3%) 30 (58.8%) 23 (59.0%)

NS5B + NS3/4A 11(18.3%) 6 (20.0%) 6 (11.8%) 11 (28.2%)
NS5A + NS5B + NS3/4A 8 (13.3%) 10 (33.3%) 14 (27.5%) 4 (10.3%)

Unavailable 1 (1.7%) 0 (0%) 1 (2.0%) 0 (0%)
IVDU 48 (80.0%) 4 (13.3%) <0.001 27 (77.1%) 21 (84.0%) 0.513

Liver markers
Child–Pugh–Turcotte 5 (5–5) 5 (5–7) 0.056 5 (5–5) 5 (5–6) 0.039

MELD 9 (8–11) 10 (7–11) 0.608 9 (7–10) 9 (8–12) 0.408
LSM 33.1 (23.6–39.3) 30.7 (27.3–48.0) 0.171 33.3 (26.0–39.3) 31 (18–39.7) 0.382

HVPG 15.3 (12.5–17.3) 16.5 (13–18) 0.467 15.5 (11.5–17.0) 15.3 (13.5–18.0) 0.883
Decompensation 25 (41.7%) 14 (46.7%) 0.652 0 (0%) 25 (100%) -

HCV markers
HCV genotype

1 38 (65.5) 24 (80%) 0.173 21 (60.0%) 17 (73.9%) 0.531
2 0 (0%) 1 (3.3%) 0 (0%) 0 (0%)
3 9 (15.5%) 3 (10%) 6 (17.1%) 3 (13.0%)
4 11 (19.0%) 2 (6.7%) 8 (22.9%) 3 (13.0%)

Log10 HCV RNA (IU/mL) 6.2 (5.7–6.7) 6.11 (5.50–6.41) 0.405 6.4 (5.8–6.7) 6.0 (5.3–6.3) 0.015
HIV markers

Nadir CD4+ T cells 130 (66–245) - - 86.5 (40.0–242.0) 150 (99–273) 0.082
Nadir CD4+ T cells < 200 cells/mm3 37 (67.3%) - - 21 (70.0%) 16 (64.0%) 0.637

Baseline CD4+ T cells 439 (234–717) - - 427 (234–721) 444 (227–685) 0.857
Baseline CD4+ T cells < 500 cells/mm3 35 (58.3%) - - 20 (57.1%) 15 (60.0%) 0.825
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Table 1. Cont.

All Patients HIV/HCV Patients
HIV/HCV HCV p Compensated Decompensated p

Prior AIDS 22 (36.7%) - - 12 (34.3%) 10 (40.0%) 0.651
Antiretroviral therapy

NRTI + NNRTI 7 (11.9%) - - 6 (17.1%) 1 (4.2%) 0.104
NRTI + II 31 (52.5%) - - 17 (48.6%) 14 (58.3%)
NRTI + PI 8 (13.6%) - - 7 (20.0%) 1 (4.2%)

PI + II + NNRTI/MVC 4 (6.8%) - - 1 (2.9%) 3 (12.5%)
Others 9 (15.3%) - - 4 (11.4%) 5 (20.8%)

Statistics: Values expressed as absolute number (percentage) and median (interquartile range). p-values were calculated by chi-square tests and Mann–Whitney tests. Abbreviations:
AIDS, acquired immune deficiency syndrome; BMI, body mass index; HCV, hepatitis C virus; HCV RNA, HCV plasma viral load; HIV, human immunodeficiency virus; HVPG: hepatic
venous pressure gradient; LSM, liver stiffness measure; IVDU, intravenous drug user; IFNα, interferon-alpha; MELD, model for end-stage liver disease; NNRTI, non-nucleoside analogue
HIV reverse transcriptase inhibitor; NRTI, nucleoside analogue HIV reverse transcriptase inhibitor; PI, protease inhibitor; II, integrase inhibitor, MVC, maraviroc.

Table 2. Differences in relative telomeres length of patients, stratified based on HIV coinfection and decompensation.

Univariable Multivariable
HIV/HCV HCV AMR (95% CI) p aAMR (95% CI) p

All RTLb 0.08 (0.05–0.14) 0.15 (0.10–0.20) 0.68 (0.55–0.85) 0.001 0.60 (0.46–0.77) <0.001 a

RTL48wk 0.12 (0.07–0.14) 0.17 (0.15–0.18) 0.67 (0.48–0.91) 0.012 0.69 (0.49–0.97) 0.032 b

Decompensated Compensated AMR (95% CI) p aAMR (95% CI) p
HIV/HCV RTLb 0.08 (0.06–0.10) 0.08 (0.05–0.18) 0.88 (0.66–1.17) 0.382 0.88 (0.66–1.16) 0.355

RTL48wk 0.07 (0.04–0.12) 0.13 (0.09–0.16) 0.66 (0.51–0.86) 0.002 0.66 (0.51–0.86) 0.002

Statics: p-values were calculated using univariate and multivariate regression models, adjusted by the clinical and epidemiological characteristics (see Statistical Analysis section), selected
by stepwise algorithm. The co-variates that remained in the model were a sex, previous HCV treatment, liver decompensation, and BMI for comparison at baseline (RTLb); and b liver
decompensation and BMI for comparison at 48 weeks (RTL48wk). The statistically significant differences are shown in bold. Abbreviations: RTL, relative size of telomeres; b, baseline;
48 wk, 48 weeks; p-value, level of significance; AMR, arithmetic mean ratio; aAMR, adjusted arithmetic mean ratio; 95% CI, 95% of confidence interval; HCV, hepatitis C virus; HIV, human
immunodeficiency virus.
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patients (Figure 2B, Table 2). There were no differences in RTL values between compensated and 
decompensated patients at baseline (aAMR = 0.88 (95% CI = 0.66–1.16); p = 0.355), while RTL values 

) HIV/HCV-coinfected
patients (n = 35 and n = 25 at baseline, n = 26 and n = 19 throughout follow-up, respectively). The error
bars represent the 95% of confidence interval. p-values between groups at baseline and 48 weeks
after completion of DAA therapy were calculated by an adjusted generalized linear model (GLM) (*),
and p-values between the two time points by a mixed GLM (see Statistical Analysis section).

3.3. Evolution of Telomere Length in HIV/HCV-Coinfected and HCV-Monoinfected Patients

We also assessed the RTL change from baseline up to 48 weeks after completing treatment for both
HIV/HCV-coinfected and HCV-monoinfected patients. We found a significant interaction between
HIV coinfection and RTL over time, since a significant RTL increase over time was found only for
HIV/HCV-coinfected (p < 0.001), but not for HCV-monoinfected patients (p = 0.468) (Figure 2A, Table 3).

Table 3. Mean differences in RTL at baseline and 48 weeks after completing HCV treatment. Patients
were stratified based on HIV coinfection and decompensation (mixed GLMs).

Baseline 48wk DM (ES) p

All 0.12 (0.01) 0.14 (0.01) −0.02(0.01) 0.001
HIV/HCV 0.08 (0.01) 0.11 (0.01) −0.03 (0.01) <0.001

HCV 0.16 (0.01) 0.17 (0.11) −0.01 (0.01) 0.468
HIV/HCV patients 0.08 (0.01) 0.11 (0.01) −0.02 (0.01) <0.001

Compensated 0.09 (0.01) 0.13 (0.01) −0.04 (0.01) <0.001
Decompensated 0.08 (0.01) 0.09 (0.01) −0.01 (0.01) 0.267

Statistics: The values for baseline and 48 weeks are shown as mean and standard error. p values were calculated
using mixed generalized linear models (GLMs). Statistically significant differences are shown in bold. Abbreviations:
RTL. relative telomere size; HCV, hepatitis C virus; HIV, human immunodeficiency virus; p, level of significance;
DM, difference of means; ES, standard error.

3.4. Evolution of Telomere Length in HIV/HCV-Coinfected Patients in Relation to Hepatic Decompensation

We also evaluated RTL values over time between HIV/HCV compensated and decompensated patients
(Figure 2B, Table 2). There were no differences in RTL values between compensated and decompensated
patients at baseline (aAMR = 0.88 (95% CI = 0.66–1.16); p = 0.355), while RTL values were significantly lower
in decompensated patients (aAMR = 0.66 (95% CI = 0.51–0.86); p = 0.002) at 48 weeks after completing
HCV treatment. We also found a significant interaction between decompensation and RTL over time with a
mixed GLM, as significant RTL increase over time was found only for compensated (p < 0.001), but not for
decompensated patients (p = 0.267) (Figure 2B; Table 3).
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Additionally, we explored if the NRTI regimens with tenofovir (TDF) could have affected the RTL,
but no significant differences in the RTLs were found at baseline (aAMR= 1.14 (95% CI = 0.85–1.53);
p = 0.398) or at 48 weeks (aAMR = 1.02 (95% CI = 0.75–1.38); p = 0.892.

4. Discussion

The present prospective study shows, for the first time, the evolution of telomere length in the
PBMCs of HIV/HCV-coinfected patients after HCV eradication with DAAs. In addition, this is the first
study that compares RTL between HIV/HCV-coinfected and HCV-monoinfected patients, showing a
clear difference between both groups with advanced HCV-related cirrhosis.

Chronic viral infections promote immune activation, inflammation, and T-cell exhaustion,
which accelerate the loss of telomere length in immune cells [2]. In our study, HIV infection had a great
impact on telomere length, because HIV/HCV-coinfected patients had lower RTL values in PBMCs
than HCV-monoinfected patients, both at baseline and at 48 weeks after DAA therapy, regardless of
other clinical and epidemiological factors. HIV triggers a reduction of telomere length [3,4], which may
be mitigated by ART [1]. However, this putative protective effect is not enough to compensate for the
HIV reduction of telomere length, as RTL values are lower in HIV patients on ART than in healthy
controls [16]. According to our results, and the data extracted by Cobos-Jiménez et al. [16], uninfected
controls show the higher RTLs, followed by HIV non-viremic, monoinfected patients on ART and HCV
patients, and lower RTL data is shown for HIV/HCV-coinfected patients. Regarding antiretroviral
therapy, there is a lot of similarity in function between HIV reverse transcriptase and telomerase,
which results in telomerase being putatively blocked by NRTIs [5,17,18]. In vivo trials have indicated
that TDF is the only NRTI that significantly inhibits telomerase activity and reduces telomere size at
therapeutic concentrations [5], although these findings were not confirmed by other studies [19,20].
In this setting, our study is consistent with previous results, according to which TDF treatment had no
effect on RTL.

Another remarkable finding was the significant increase in RTL values after HCV eradication
with DAAs that was found in HIV/HCV-coinfected patients only. However, a recent study of
24 HCV-monoinfected patients on DAA therapy described a significant telomere elongation in PBMCs
12 weeks after completing HCV treatment [21]. Our HCV-monoinfected patients only showed a slight
upward trend in telomere size after HCV therapy that was not significant, probably due to the small
sample size at 48 weeks after completing HCV treatment. It may also be relevant that the follow-up
time was longer in our study.

The greater increase in RTL values of HIV/HCV-coinfected patients after HCV elimination may
be attributed to the fact that this group of patients started with a more immunosuppressed status,
and the observed recovery could be greater. Additionally, it is possible that HCV has a greater effect on
the shortening of telomeres in HIV/HCV-coinfected patients, and therefore, when HCV is eradicated,
a more marked improvement is observed. Zanet et al. [19] found similar results identifying that HCV
coinfection in HIV-infected patients can accelerate the shortening of telomeres. Along this same line,
Reynoso et al. reported [22] that HIV/HCV coinfection may have a synergistic effect between both HIV
and HCV, causing a more pronounced decrease in telomerase activity in HIV/HCV-coinfected patients
than in HCV-monoinfected patients. Additionally, note that we previously found no evidences of RTL
change in a different cohort of non-cirrhotic patients. However, in this case, patients were treated with
IFN [23], whose strong effect might have slowed down the gain in telomere length [24].

Additionally, our data showed that HIV/HCV-coinfected patients with compensated and
decompensated cirrhosis showed similar RTL values at baseline. However, after HCV eradication
with DAAs, a significant increase in RTL was only observed in compensated patients. When hepatic
decompensation occurs in HIV/HCV-coinfected patients, prognosis rapidly worsens and increases
the risk of death [25]. Moreover, cirrhosis-associated immune dysfunction is more accentuated in
decompensated patients, with higher levels of immune activation, inflammation, and deregulation
of the immune system, from which it is more difficult to recover [10]. Under these circumstances,
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the length of telomeres of immune cells (such as PBMCs) would reach a critical size, which could
compromise the telomerase capacity to recover telomere length.

Telomere length change has been previously shown to be different for each cell type of PBMCs [26].
In this context, a similar telomere length has been described for T-cells and monocytes, with longer
telomeres for B-cells. Unfortunately, we do not have data on the cellular composition of PBMCs in HCV
vs HIV/HCV samples, which would have been interesting in order to check whether different cellular
compositions contribute to the RTL differences observed between groups. We only have available data
for T-cell subsets in compensated and decompensated groups, which showed no significant differences
between groups. However, it has to be noted that the telomere length of PBMCs is correlated with
T-cells, B-cells, and monocytes [26], and the change in telomere length with aging is only slightly
different for T-cells, B-cells, and monocytes. According to this, PBMCs would reflect the average
telomere length of the three populations, being an adequate peripheral marker of telomere size
regardless of the cellular composition.

Moreover, the change in the RTL of PBMCs could be extrapolated to the liver, as indicated by
Feng et al. [27]. In this work, they observed similar variations in RTL values of paired liver biopsy
and PBMC samples from HCV-monoinfected and HBV/HCV-coinfected patients with hepatocellular
carcinoma. Therefore, PBMC harvest may be a useful, minimally invasive procedure (liquid biopsy) to
estimate RTL in hepatocytes.

Several limitations should be taken into account. Firstly, this is a preliminary study with a
limited sample size, which could have limited the possibility of finding statistical significance in some
subgroups. However, despite this, note that its longitudinal design allows us a higher statistical
power than cross-sectional studies. With regards to this, the sample size to assess RTL change in
HIV/HCV-coinfected patients (n = 45) is adequate to explore the impact of HCV elimination with
DAAs on telomere length in this preliminary study. Secondly, it would be necessary to evaluate
telomere length together with other parameters related to senescence, such as cytokine expression,
lipid peroxidation, and mitochondrial damage estimation, for a better knowledge of the mechanisms
involved in HCV elimination.

5. Conclusions

HCV eradication with all-oral DAAs was associated with an increase in telomere length
in HIV/HCV-coinfected patients with advanced cirrhosis, particularly in compensated patients.
This finding suggests that HCV clearance may have implications in age-related pathologies in this
population group.
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HCC Hepatocellular carcinoma
HIV Human immunodeficiency virus
IFN Interferon
LSM Liver stiffness measurement
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Diego Rincón, Teresa Aldámiz-Echevarría, Vega Catalina, Pilar Miralles, Teresa Aldámiz-Echevarría, Francisco Tejerina,
María C Gómez-Rico, Esther Alonso, José M Bellón, Rafael Bañares, and Juan Berenguer.

Hospital Universitario La Paz/IdiPAZ (Madrid, Spain): José Arribas, José I Bernardino, Carmen Busca,
Javier García-Samaniego, Víctor Hontañón, Luz Martín-Carbonero, Rafael Micán, María L Montes-Ramírez,
Victoria Moreno, Antonio Olveira, Ignacio Pérez-Valero, Eulalia valencia, and Juan González-García.

Hospital Universitario Puerta de Hierro (Madrid, Spain): Elba Llop and José Luis Calleja.
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