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ABSTRACT 

HIV-1 infection remains incurable despite the efficient combined antiretroviral therapy 

(cART) due to the formation of long-lived viral reservoirs that are mostly settled in CD4+ 

T cells and maintained by homeostatic proliferation. The use of cytostatic drugs such as 

tyrosine kinase inhibitors (TKIs) as adjuvants to cART could be helpful to avoid the 

reservoir establishment and replenishment. We determined previously that TKI dasatinib, 

which is successfully used for treating chronic myeloid leukemia (CML), shows antiviral 

effect against HIV-1 infection of CD4+ T cells in vitro. HIV-infected subjects that 

developed CML may safely combine long-term treatment with TKIs and cART but there 

is no information about the effect of dasatinib on HIV-1 reservoir in vivo. Therefore, we 

analyzed the ability of dasatinib to protect NSG mice engrafted with human CD34+ 

hematopoietic stem cells from HIV-1 infection. Mice were randomly assigned to two 

groups that received dasatinib or placebo daily by oral gavage. After five days, all mice 

were infected intraperitoneally with HIV-1 and followed up for 21 days in the absence of 

cART. Daily administration of dasatinib decreased viral and proviral load in all treated 

mice, showing in 40% of these mice undetectable viral RNA or DNA in blood. Proviral 

HIV-1 DNA in gut-associated lymphoid tissue (GALT) was also reduced in all dasatinib-

treated mice and under the limit of detection in one of these mice. Finally, treatment with 

dasatinib modified the distribution of CD4+ and CD8+ T-cell subpopulations, delaying 

their differentiation into memory T-cell subsets that are a major component of the viral 

reservoir. In conclusion, dasatinib afforded protection of NSG mice from HIV-1 

intraperitoneal infection in the absence of cART. 
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1. Introduction 

 Combined antiretroviral treatment (cART) has transformed HIV-1 infection into a 

chronic disease where the virus remains undetectable. However, treatment interruption 

leads to an eventual viral rebound in most patients due to the existence of a highly stable 

HIV-1 reservoir that cannot be eliminated only by cART [1-3]. It has been estimated that 

more than 80 years would be necessary to produce some significant change in the number 

of latently infected cells if only cART is used as treatment [4, 5]. Although some 

chronically infected patients are able to control viral replication after treatment 

interruption, these individuals have some exceptional characteristics that are not shared by 

all patients [6-8]. Moreover, such viral control does not imply the clearance of the 

reservoir during cART. 

 HIV-1 reservoir is located in higher proportion in central memory (TCM), stem cell-like 

memory (TSCM) and effector memory (TEM) CD4+ T cells [9-11], whereas terminally 

differentiated effector memory (TEMRA) and naïve (TN) CD4+ T cells show a minor 

contribution [10, 12]. These latently infected cells remain undetectable for the immune 

system and cART until they are activated and begin T-cell expansion, proliferation and 

full viral replication [13]. Therefore, T-cell activation is an essential step for HIV-1 

replication and its control may interfere with the formation and replenishment of the 

reservoir. Src tyrosine kinases (Src-TK) are critical for T-cell activation. We previously 

demonstrated that p56lck, which is a key signaling Src-TK for T-cell development and 

maturation, is activated in CD4+ T cells during HIV-1 infection [14]. Consequently, some 

Src-TK inhibitors (TKIs) -currently used in the clinic practice for the treatment of chronic 

myeloid leukemia (CML)- are quite efficient to interfere with HIV-1 infection of CD4+ T 

cells [15]. This antiviral effect of TKIs was observed not only after treatment in vitro of 

peripheral blood mononuclear cells (PBMCs) isolated from healthy donors that were 
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subsequently infected with HIV-1, but also in PBMCs isolated from patients with CML on 

treatment with TKIs that were infected ex vivo [14, 15]. One of the main mechanism of 

action of TKIs such as dasatinib against HIV-1 infection was based on preserving the 

antiviral activity of the innate immune factor SAMHD1 [16], whose phosphorylation and 

subsequent inactivation is necessary for HIV-1 to initiate the infection of the host cell [17]. 

 Although cancer has become a leading cause of morbidity and mortality in HIV-

infected patients [18], CML is not commonly associated to HIV-1 [19]. Nevertheless, 

some HIV-infected patients have developed CML while on cART and they have started a 

long-term treatment with TKIs, including dasatinib [20-22]. Once drug interactions 

between cART and TKIs have been discarded, it has been described that these patients 

normally showed good tolerance to TKIs and excellent clinical evolution in their 

hematological disease. However, no information about the effect of TKIs on the 

progression of the viral reservoir has been described for these patients. 

 In the present study, we analyzed the ability of dasatinib to interfere with HIV-1 

infection in vivo using highly immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) 

mice engrafted with human CD34+ hematopoietic stem cells in order to give rise to a 

functional human immune system [23], and we evaluated whether the antiviral effect of 

TKIs against HIV-1 infection that was observed in vitro and ex vivo may be reproduced in 

vivo. The results obtained could support the strategy of using TKIs as adjuvants of cART 

in order to restrain the formation and maintenance of the reservoir in HIV-infected 

patients. 
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2. Materials and methods 

2.1. Animal model 

 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were selected for this study since it is an 

extremely immunodeficient mouse strain that permits the humanization by engraftment of 

a wide range of primary human cells such as human CD34+ hematopoietic stem cells. 

Therefore, CD4+ T cells, the main target for HIV-1 infection, are preserved in this model. 

Mice engrafted with human CD34+ hematopoietic stem cell were obtained from The 

Jackson Laboratory (Bar Harbor, ME). All mice were engrafted with cells from the same 

human donor in order to reduce the experimental variability. Mice were included in the 

experiments four months after CD34+ engraftment. To avoid the possibility of developing 

a graft versus host disease (GVHD) that could interfere with the results, mice were closely 

monitored for hair changes and weight loss, main markers of the disease. Significant hair 

changes or weight reduction > 15% were not observed during the time of the study. 

Regarding to immune reconstitution, mean human CD45+ cells was 63.7%, of which 

20.4% on average were CD3+ T cells (Table 1). Mice that were not guaranteed a minimum 

of 20% human CD3+ T cells were not included in the study. 

2.2. Ethical statement 

 All animal procedures were performed according to protocol #10242 that was 

reviewed by the Animal Experimentation Ethics Committees of the University Hospital 

Germans Trias i Pujol (Barcelona, Spain) and Instituto de Salud Carlos III (Madrid, 

Spain), and approved by Generalitat de Catalunya (Barcelona, Spain) and Comunidad de 

Madrid (Madrid, Spain) (PROEX 253/15), according to current Spanish and European 

Union legislation regarding the protection of experimental animals. Mice were supervised 

daily following a strict protocol in order to ensure animal welfare. 
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2.3. Sample Size and Experimental Design 

 Sample size was determined to compare plasma viral load and total HIV-1 DNA 

between two groups of mice - untreated or treated with dasatinib - through power analysis 

using G-POWER software (Universität Düsseldorf, Germany). Assuming normality of the 

variables in log scale and non-inferiority of treatment effect over untreated mice, we 

considered a one-tailed T-test for the difference between two independent means and a 

signification level (alpha) of 0.05. We determined a sample size of n=5 mice per group to 

observe an effect size of 1.7 (means differences over 1.7 times the standard deviation) 

reaching a power of 80%. We used then 5 mice per group in order to accomplish the Three 

Rs principles for more ethical use of experimental animals. 

 Ten NSG mice were randomly assigned to group 1 (n=5) or group 2 (n=5) (Fig 1). 

Mice in group 1 were treated daily with 100µl of placebo (citrate buffer 80mM pH 3.1) by 

oral gavage. Mice in group 2 were treated daily with 100µl of dasatinib 20mg/kg 

(0.5mg/day) by oral gavage. Dasatinib (BMS-354825) for in vivo use was kindly provided 

by Bristol-Myers Squibb (BMS) (New York, NY) and previously prepared as oral solution 

for multiple dose in citrate buffer 80mM pH 3.1. Citrate buffer was prepared using citric 

acid monohydrate and sodium citrate dehydrate purchased from Sigma-Aldrich Merck 

(Sigma Aldrich Química, Madrid, Spain), according to the protocol provided by BMS 

(New York, NY). In order to ensure a high drug bioavailability, mice did not have access 

to food or water at least 12 and 3 hours before oral gavage, respectively. Direct delivery of 

the drug into the stomach by oral gavage ensured precise and accurate dosing of animals 

[24]. Since dasatinib bioavailability is highly dependent on gastric pH [25], it was 

administered in acid solution to facilitate fast absorption kinetics due to its ability to 

permeate the gastric mucosa [26]. An appropriate volume (lower than 5 ml/kg) was used 

to avoid stress or discomfort, slowly delivered to ensure better tolerance [27]. All mice 
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were treated for 5 days before administering a single intraperitoneal injection of HIV-1NL4-

3 (17,500 TCID50 per dose). X4-tropic HIV-1 was used due to the ability of dasatinib to 

downregulate the expression of CCR5 on the cellular surface in vitro [15] and the 

subsequent potential interference with the viral entry of R5-tropic viruses. Mice were 

maintained for 21 days after infection and whole blood samples were collected every 7 

days. Samples of GALT were collected post-mortem at day 21. 

2.4. HIV quantification in blood and GALT 

 Plasma was used for HIV-RNA quantification with Abbott m2000 RealTime System 

(Abbott Laboratories, Chicago, IL). We also lysed blood cells and quantified HIV-DNA as 

previously described [28]. Peyer patches from gut samples were collected at the end time 

point, mechanically disaggregated and used to quantify HIV-DNA by qPCR. DNA was 

isolated from tissues using DNeasy Blood & Tissue kit (Qiagen Iberia, Madrid, Spain) and 

HIV-1 proviral integration was quantified by using nested Alu-LTR PCR as described 

previously [29, 30] with modifications [31], using StepOne Real-Time PCR System 

(Applied Biosystems). 

2.5. Cell population in blood 

 Whole blood was stained to characterize cell populations in CD4+ and CD8+ T cells 

(hCD45+CD3+CD8+/–CD45RA+/–CCR7+/–). All conjugated antibodies were purchased 

from BD Biosciences Europe (Eysins, Switzerland) and analyses were performed using a 

BD LSRFortessa X-20 flow cytometer (BD Biosciences) and FlowJo v10 software 

(TreeStar, Ashland, OR). 

2.6. Statistical analysis 

 Statistical analysis of the results was performed using R v.3.4 and Graph Pad Prism 5.0 

(Graph Pad Software Inc., San Diego, CA). Comparisons were analyzed using non-



	
	

8	
	

parametric rank based tests. For variables affected by detection limits, Peto-Prentice test 

and paired Prentice-Wilcoxon test for censored data where used. P values (p) < 0.05 were 

considered statistically significant in all comparisons and were represented as *. 
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3. Results 

3.1. Study design 

 Ten NSG mice of identical genetic background (Table 1) were randomly divided into 

Group 1 (n=5), treated daily with oral placebo, and Group 2 (n=5), treated daily with 

dasatinib (Fig. 1). Treatment was administered by oral gavage. After five days of 

treatment, all mice were intraperitoneally injected with HIV-1 and then maintained until 

day 21 post-infection. Blood samples were taken at day 7, 15 and 21 days post-infection 

(dpi). Mice were sacrificed at day 21 and samples of GALT were taken. 

3.2. Effect of treatment with dasatinib on HIV-1 viremia and proviral integration 

 Plasma viremia increased over time in all animals (Fig. 2a). However, an overall 

reduction of 3.1-fold was observed in dasatinib-treated mice at 21 dpi. Two mice from the 

dasatinib-treated group (#2 and #5) showed persistent undetectable plasma viremia. 

Proviral HIV-DNA in peripheral blood cells also increased over time in all mice (Fig. 2b), 

showing an overall decrease of 3.1-fold in all dasatinib-treated mice at 21 dpi, in 

agreement with plasma viral load, with two mice (#2 and #5) showing no detectable 

proviral HIV DNA with our assay. Integrated provirus was also quantified in GALT at 21 

dpi, and it was reduced 1.4-fold in dasatinib-treated group (Fig. 2c). One mouse from this 

group (#5) showed no proviral HIV DNA in GALT. The other mouse with no detectable 

viral RNA and proviral HIV DNA in blood (#2) had, however, detectable provirus in 

GALT. 

3.3. Changes in T-cell subpopulations associated with dasatinib treatment 

 The effect of dasatinib on the distribution of CD4+ and CD8+ T-cell populations was 

analyzed by flow cytometry after 21 days of infection. We observed an increase of 25% 

and 29% on average in naïve CD4+ and CD8+ T cells (p<0.05), respectively, in the group 
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of NSG mice treated with dasatinib for 26 days, in comparison with the control group 

(Fig. 3a). These data indicated that treatment with dasatinib in vivo impeded the 

differentiation of both CD4+ and CD8+ naïve to memory T cells in humanized mice (Fig. 

3b). In fact, the percentage of CD4+ and CD8+ TCM cells was reduced 15% and 7%, 

respectively (p<0.05), in dasatinib-treated mice, whereas both effector memory T-cell 

types (TEM and TEMRA) were reduced by 8% (p<0.05) and 2% in CD4+ T cells, and by 16% 

and 6% in CD8+ T cells (p<0.05), respectively. 
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4. Discussion 

 Previous studies showed that some TKIs such as dasatinib could be an efficient tool 

against HIV-1 as they may protect CD4+ T cells from infection and proviral integration 

both in vitro and ex vivo [14, 15]. Dasatinib may also interfere with CD4+ T cell 

proliferation induced by homeostatic cytokines such as IL-2 and IL-7 in vitro [32], which 

could be useful to hinder the replenishment of HIV-1 reservoir. These effects have been 

mostly related to the ability of dasatinib to interfere with SAMHD1 phosphorylation and 

subsequent inactivation, which would lead to CD4+ T cell activation and proliferation 

[32]. Although these results seemed very promising, we had no warranty of the effect of 

dasatinib during HIV-1 acute infection in vivo, whether it could really impede HIV-1 

infection and reservoir establishment. Therefore, we treated NSG mice with dasatinib for 5 

days and then they were infected with HIV-1 through intraperitoneal injection. The 

presence of viral RNA and DNA in blood was analyzed every 7 days after the infection 

and the size of the reservoir in GALT was analyzed after 21 days of infection. We chose 

the NSG mice model since this strain preserves functional T cells with the ability to 

mature and differentiate into subpopulations and it has been validated for long-term 

studies of infectious diseases [33]. Dasatinib was administered before HIV-1 infection in 

order to ensure that we were preserving SAMHD1 from phosphorylation and to be able to 

reproduce the protective effects against HIV-1 infection that we observed in vitro [14]. A 

2.4-fold decrease on average in the viral load of the dasatinib-treated group was observed 

at day 7. This restraint was observed throughout the duration of the experiment, being 3.1-

fold reduced in the dasatinib-treated group at day 21. This restrictive effect caused by 

dasatinib was variable but it was observed in all dasatinib-treated mice, which would 

discard that this observation was due to a general failure of infection in dasatinib-treated 

group. The fact that we obtained significant differences among groups proved that we had 
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enough statistical power for the significance of the results. Accordingly, we concluded that 

pre-treatment of mice with dasatinib afforded protection against HIV-1 acute infection, 

regarding the placebo group and in the absence of cART. Moreover, two out of five mice 

showed no detectable viral load or total DNA in blood and one of these mice showed 

undetectable proviral DNA in GALT. Besides, we isolated 3.2-fold more total DNA from 

the gut tissue of dasatinib-treated mice than from the placebo group at 21 dpi (data not 

shown). As HIV-1 acute infection is characterized by massive depletion of activated CD4+ 

T cells mainly in GALT [34], dasatinib could be able to protect the mucosal cells from 

viral damage. The dosage of dasatinib used for this study (20 mg/kg/day) was selected 

according to previous in vivo experiments [35] and pharmacokinetic data obtained from 

the supplier BMS [36]. In fact, near maximal absorption of dasatinib occurs when it is 

given at this dosage [37], without causing toxicity as the animals did not show changes in 

weight, behavior or general appearance during the time of treatment. 

 The effect of dasatinib on the distribution of CD4+ T-cell subpopulations was also 

analyzed since differentiation of latent memory T cells is essential for the establishment, 

expansion and maintenance of HIV-1 reservoir. CD4+ TCM cells are the largest fraction of 

memory population and a predominant site for persistent HIV-1 infection even in patients 

on cART [9]. The calculated half-life for TCM cells reaches 4.8 years [10, 11] and they 

proliferate under homeostatic stimuli such as IL-7, ensuring a highly stable HIV-1 

reservoir that is replenished most likely by clonal expansion of infected memory CD4+ T 

cells [38], rather than de novo infection [39]. Moreover, memory stem cells, a slightly 

earlier developmental stage of TCM cells, also contribute to the long-term viral reservoir, 

showing an estimated half-life of 9.2 years and higher susceptibility to homeostatic 

proliferation [40]. We observed that treatment with dasatinib in vivo modified the 

distribution of T-cell subpopulations in the humanized mice, favoring the population of 
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naïve CD4+ and CD8+ T cells over the differentiation to memory or effector T cells. This 

could imply that dasatinib was interfering with the generation of CD4+ TCM subpopulation, 

which is the most important component of the viral reservoir. As Lck is essential for T-cell 

development, differentiation and activation [41], and dasatinib inhibits Src-TKs such as 

Lck [35], it could be expected that these modifications in the pattern of T-cell 

subpopulations may also be observed in patients with CML on treatment with dasatinib. 

However, to our knowledge, this study has not yet been performed. 

 Due to viral control is achieved at an early stage of HIV-1 infection mainly by CD8+ 

T-cells [42, 43], the influence of dasatinib on effector CD8+ T-cell populations might 

prove counterproductive. Development from naïve to TCM cells is quite different in CD4+ 

and CD8+ T cells, and it has been described that CD4+ T cells are more sensitive to the 

inhibitory effect of dasatinib in vitro [44]. However, 94% of total CD8+ T cells were naïve 

in mice treated with dasatinib, as compared to 78% naïve CD4+ T cells. Because dasatinib-

treated mice showed lower viral replication and smaller reservoir size than placebo-treated 

mice, even with a lower proportion of CD8+ TEM and TEMRA cells, this suggested that low 

CD8 differentiation could also be consequence of low viral replication. Intriguingly, 

although mice from dasatinib-treated group showed plasma viremia and proviral HIV 

DNA under the limit of detection (#2 and #5), all mice from this group showed the same 

percentage of CD4+ and CD8+ T-cell subpopulations, even with percentages of effector 

CD8+ T cells under the average in placebo-treated mice. This may indicate that the 

antiviral effect of dasatinib was not dependent on a higher number of cytotoxic cells but 

likely more related to the protection of CD4+ T cells from acute infection and to a low 

viral reservoir of memory cells. In fact, it has been described that patients able to maintain 

undetectable levels of HIV-1 replication in the absence of cART also have very low levels 

of infected CD4+ TCM cells [45], which is unusual in most patients on cART [46]. 
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 Our study presents several limitations. First, we used the intraperitoneal route of 

infection; it would be important to test if the protection could be higher with a different 

route of infection such as intravaginal. Second, in this study we analyzed the ability of 

dasatinib to interfere with the reservoir formation as a preventive drug but we should 

determine if dasatinib will also exert its antiviral effect in individuals already infected with 

HIV-1 and on treatment with cART. Finally, it has been described that dasatinib may have 

the ability to enhance the cytotoxic activity of Natural Killer (NK) cells [47] but NK cell 

expansion is very poor in NSG model. Therefore, other animals expressing human NK 

cells such as Hu-Rag2–/–;γ–/– mice should be used to test this potential anti-HIV-1 effect of 

dasatinib. 

 In conclusion, we provided the proof of concept that dasatinib is a valid option to 

safely treat HIV-1 infection in order to interfere with the reservoir formation and 

replenishment, thereby supporting the initiation of a pilot clinical trial with HIV-infected 

patients. 
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Figure legends 

Fig. 1. Experimental design. NSG mice were divided into two groups treated daily with 

placebo (group 1, n=5) or dasatinib (group 2, n=5) from 5 days before HIV-1 

intraperitoneal injection. All mice were then treated daily with either placebo (group 1) or 

dasatinib (group 2) for 21 days. Blood samples were taken every 7 days and GALT 

samples were taken at 21st day, post-mortem. 

Fig. 2. Analysis of viral and proviral load in blood and tissue. (a) Viral load was analyzed 

in plasma of NSG mice in both groups treated with placebo and dasatinib 7, 15 and 21 

days after HIV-1 infection. Total HIV-1 DNA was analyzed in blood cells (b) and 

integrated HIV-1 DNA was analyzed in GALT (c). Each symbol represents data of an 

individual mouse. Open symbols indicate undetectable values. Bars represent the median 

with interquartile range; non-parametric test, p<0.05 (*). 

Fig. 3. Quantification of T cell populations. (a) Blood samples of each NSG mice from 

both placebo- and dasatinib-treated groups were analyzed by flow cytometry after staining 

with specific antibodies to quantify the different CD4+ and CD8+ T-cell subpopulations. 

Each symbol represents data of an individual mouse. Error bars represent the median with 

interquartile range; non-parametric test, p<0.05 (*). (b) Representation of previous data 

from CD4+ and CD8+ T-cell subpopulations in pie plots showing the percentage of each 

subpopulation. 

 


