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SHORT TITLE: A-type lamins and cardiovascular disease in progeria 

 

HIGHLIGHTS: 
• A-type lamins (LMNA gene) play important structural and regulatory roles. 
• Multiple diseases arise from LMNA mutations, including progeroid syndromes. 
• Premature death in progeria is caused by severe cardiovascular disease. 
• Diverse mechanisms perturb cellular and whole-body homeostasis in progeria. 
• Additional progeria-causing mechanisms remain unknown. 
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ABSTRACT  

Lamin A is a nuclear intermediate filament protein with important structural and 
regulatory roles in most differentiated mammalian cells. Excessive accumulation of its 
precursor prelamin A or the mutant form called ‘progerin’ causes premature aging 
syndromes. Progeroid ‘laminopathies’ are characterized by severe cardiovascular 
problems (cardiac electrical defects, vascular calcification and stiffening, atherosclerosis, 
myocardial infarction, and stroke) and premature death. Here, we review studies in cell 
and mouse models and patients that are unraveling how abnormal prelamin A and 
progerin accumulation accelerates cardiovascular disease and aging. This knowledge is 
essential for developing effective therapies to treat progeria and may help identify new 
mechanisms underlying normal aging.  

 

 

INTRODUCTION 

A-type lamins (Lamin A and C, encoded by the LMNA gene in human chromosome 1, 
National Centre for Biotechnology Information Reference Sequence NG_008692.2) are 
key components of the nuclear envelope [1]. Mature lamin A is generated through 
sequential posttranslational modifications of the precursor protein prelamin A, which 
normally does not accumulate in cells (Figure 1A). Maturation processing of prelamin A 
involves the following steps: 1) farnesylation at the cysteine residue of the C-terminal 
cysteine-serine-isoleucine-methionine motif (CSIM), 2) cleavage of the terminal SIM 
residues, 3) carboxymethylation of the farnesylcysteine, and 4) endoproteolytic removal 
of the 15 C-terminal aminoacids—including the farnesylcysteine α-methyl ester—by the 
zinc metalloprotease ZMPSTE24/FACE-1 [2]. The first three modifications render the 
protein more hydrophobic and facilitate its interaction with the nuclear membrane, and 
cleavage of the farnesyl-group increases the flexibility of lamin A once integrated in the 
nuclear lamina [3]. 

A-type lamins are expressed in most differentiated mammalian cells [1]. The lamin field 
has traditionally focused on the roles played by these filamentous proteins in maintaining 
nuclear architecture. However, groundbreaking work over the last few years has 
demonstrated that A-type lamins and associated nuclear envelope proteins also regulate 
multiple cell functions, including DNA replication and repair, higher-order chromatin 
organization, signal transduction, and gene transcription [4,5]. Interest in A-type lamins 
has acquired added relevance with the discovery that LMNA mutations, or other genetic 
defects leading to changes in lamin A abundance or post-translational processing, cause 
at least 12 human disorders termed laminopathies [6].  

Most laminopathy symptoms develop during childhood or adolescence, but some 
laminopathies are lethal at very young age, such as those affecting individuals with 
ZMPSTE24 mutations causing abnormal accumulation of farnesylated prelamin A [7] and 
Hutchinson-Gilford progeria syndrome (HGPS) patients, who express a mutant form of 
prelamin A called progerin [2,8] (Figure 1B). HGPS has an estimated prevalence of 1 in 
20 million (www.progeriaresearch.org). Most HGPS patients carry in heterozygosis a de 
novo dominant synonymous LMNA mutation (c.1824C>T: GGC>GGT; p.G608G) which 
activates an aberrant 5’ splicing site in exon 11 [9,10]. Abnormal splicing leads to the 
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synthesis of progerin, which lacks 50 aminoacid residues encompassing the ZMPSTE24 
cleavage site. Like prelamin A, progerin retains the farnesylated modification at the C-
terminus and remains permanently attached to the nuclear membrane. HGPS is 
characterized by severe failure to thrive, alopecia, joint contractures, scleroderma-like 
skin, lipodystrophy, and skeletal dysplasia [8,11,12**,13]. HGPS patients also develop 
exacerbated cardiovascular disease (CVD), including cardiac electrical defects, 
atherosclerosis, vascular stiffening and calcification, and die at an average age of 14.6 
years, predominantly from myocardial infarction or stroke [8,11,12**,13,14**] (Figure 
2). Abnormal prelamin A accumulation due to ZMPSTE24 mutations causes progeroid 
syndromes that share key features with HGPS, including premature aging [7].  

Cell and animal models are essential for understanding the molecular mechanisms 
causing progeria and for the identification of therapeutic targets [15-17]. Preclinical 
studies have shown that the progeroid phenotype can be ameliorated by treatment with 
farnesyltransferase inhibitors (FTIs) [17,18], prompting several recent single-arm clinical 
trials of lonafarnib to reduce progerin toxicity. This FTI improved some aspects of 
cardiovascular and bone disease and audiological status in patient subgroups [19], and 
Kaplan-Meier survival analysis suggested increased mean survival by 1.6 years in treated 
patients [12]. The low efficiency of FTIs in ameliorating progeria symptoms may be due 
to alternative prenylation by geranylgeranyltransferase in the setting of 
farnesyltransferase inhibition [20]. Supporting this view, the longevity of progeroid 
Zmpste24-null mice is substantially extended by combined treatment with statins and 
aminobisphosphonates to simultaneously inhibit progerin and prelamin A farnesylation 
and geranylgeranylation [20]. This finding has been followed up in a ‘triple-drug’ clinical 
trial to evaluate the efficacy of combination therapy with an FTI (lonafarnib), a statin 
(pravastatin), and an aminobisphosphonate (zoledronic acid) [21**]. No participants 
withdrew because of side effects, and comparisons with lonafarnib monotherapy revealed 
an additional bone mineral density benefit; however, some patients showed increased 
rates of carotid and femoral arterial plaques and extraskeletal calcification, and addition 
of pravastatin and zoledronic acid produced no added cardiovascular benefit.  

Further research is clearly needed to improve HGPS therapies and to find a cure for this 
devastating disease. Since CVD is the main cause of death in HGPS, here we review the 
molecular mechanisms by which prelamin A and progerin cause cardiovascular damage. 
This knowledge may shed light on the molecular mechanisms driving physiological aging 
and associated CVD, since progerin and prelamin A are both expressed in cells and tissues 
of normally aging non-HGPS individuals [2,8]. 

 

VASCULAR DISEASE IN PROGERIA 

Vascular smooth muscle cell loss 

Alterations in vascular smooth muscle cells (VSMCs) play a major role in the 
development of vascular disease associated with normal and premature aging. HGPS 
patients exhibit VSMC loss with accumulation of matrix proteoglycans in the aorta and 
carotid arteries [22,23], and similar changes have been reported in arteries from progerin-
expressing mice [24,25]. Suppression of poly (ADP-ribose) polymerase 1 (PARP1) in 
human VSMCs differentiated from induced pluripotent stem cells of HGPS patients 
activates error-prone non-homologous end joining of DNA double-strand breaks, 
prolonging mitosis and causing mitotic catastrophe and caspase-independent cell death 
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[26*]. Future studies are required to identify additional mechanisms causing VSMC loss 
in HGPS, and to assess the contribution of VSMC death to progerin-induced vascular 
disease. 

 

Vascular calcification  

Vascular calcification (VC) increases with ageing and contributes to CVD-associated 
morbimortality [27]. Excessive VC occurs both in HGPS patients (aortic calcification, 
calcific aortic valve stenosis, and calcific mitral valve) [28-30] and HGPS-like mouse 
models (aortic calcification) [24,31]. VC is regulated by a tight balance between 
activators and inhibitors, many of which are produced by VSMCs. Extracellular inorganic 
pyrophosphate (ePPi) is a major inhibitor of calcification [32,33], and three lines of 
evidence indicate that defective ePPi metabolism promotes VC in progerin-expressing 
LmnaG609G/+ mice [31] (Figure 3). First, primary VSMCs derived from LmnaG609G/+ aorta 
display mitochondrial dysfunction, leading to reduced synthesis of ATP (the main 
substrate for ePPi synthesis), as well as upregulation of the ectoenzymes tissue-
nonspecific alkaline phosphatase (TNAP, the main enzyme involved in ePPi hydrolysis) 
and apyrase1/eNTPD1 (which hydrolizes ATP to release inorganic phosphate). These 
alterations cause defective production and accumulation of ePPi. Second, LmnaG609G/+ 
mice have higher alkaline phosphatase activity and lower ATP and PPi levels in plasma. 
Finally, PPi treatment inhibits VC in LmnaG609G/+ mice. Future studies are thus warranted 
to elucidate the molecular mechanisms causing progerin-dependent TNAP and 
apyrase1/eNTPD1 upregulation and mitochondrial dysfunction in VSMCs, and to 
investigate whether restoring PPi levels can attenuate VC in HGPS. 

Recent studies have identified prelamin A as a biomarker and driver of human vascular 
aging that accelerates VSMC senescence and calcification at least in part by promoting 
the accumulation of DNA damage and the expression of osteogenic markers (Figure 4). 
Oxidative stress reduces endogenous ZMPSTE24/FACE1 expression in VSMCs, and 
prelamin A accumulation occurs in VSMCs undergoing aging in vitro, in medial VSMCs 
from aged individuals, and in atherosclerotic lesions, where it often colocalizes with 
senescent and degenerate VSMCs [34]. In cultured VSMCs, ZMPSTE24/FACE1 
silencing, treatment with HIV-protease inhibitors (both leading to increased expression 
of endogenous prelamin A), and prelamin A overexpression all promote inflammation, 
senescence, and calcification [34,35]. Prelamin A accumulation in VSMCs triggers a 
persistent amplification of the DNA damage response (DDR) directed by increased 
activity of ataxia-telangiectasia-mutated (ATM)- and ataxia-telangiectasia Rad3 (ATR)-
related kinases [36]. As a consequence, prelamin A-positive VSMCs release the 
calcification modulators interleukin 6, bone morphogenic protein 2 and osteoprotegerin, 
along with other factors and cytokines characteristic of the senescence-associated 
secretory phenotype [36] (Figure 4). Prelamin A expression in VSMCs also induces 
expression of the calcification regulators osteocalcin and osteopontin, as well as 
expression and nuclear translocation of osteoblast-specific Run-related transcription 
factor-2 (RUNX2) [37]. Increased DDR and prelamin A levels induce, via nesprin-2 and 
lamin A interactions, the segregation of extracellular signal-regulated kinases 1 and 2 
(ERK1/2) to promyelocytic leukaemia protein nuclear bodies at sites of DNA damage 
[38]. Prelamin A may also impair DDR in aged VSMCs through a defective nuclear 
import of 53 binding protein-1 (53BP1), associated with a deregulated Ran gradient 
causing abnormal topological arrangement of nucleoporin NUP153 [39*]. Treatment with 
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remodelin, an inhibitor of the N-acetyl-transferase NAT10 that improves the phenotype 
of HGPS fibroblasts [40**], alleviates deficiencies associated with nuclear lamina 
alterations in VSMCs, including NUP153 disorganization, 53BP1 cytoplasmic 
accumulation, and senescence [39]; however the underlying molecular mechanism 
remains elusive.  

 

Atherosclerosis 

Atherosclerosis and vascular stiffening are highly prevalent in HGPS patients and in the 
geriatric population [12**,19,23,27,41,42]. Although many similarities have been found 
between atherosclerotic plaques from normally aged individuals and HGPS patients, 
HGPS lesions exhibit more prominent fibrosis and adventitial thickening [11,23]. In 
HGPS patients, progerin is expressed in the nuclei of a very high proportion of medial 
VSMCs, neointimal cells, adventitial fibroblasts, and arteriolar VSMCs and endothelial 
cells (ECs). Interestingly, progerin is detected at a very low rate in the cell cytoplasm in 
coronary arteries in non-HGPS individuals, and its expression increases significantly with 
aging (mean progerin staining rate at the age of 97 years: ~20 cells per 1000 cells in 
adventitia and ~1 cell per 1000 cells in media and plaque) [23]. 

Atherosclerosis occurs mainly in arterial segments with curvatures and branching, which 
display EC dysfunction triggered by low shear stress (SS) or oscillatory and turbulent SS 
[43,44]. Evidence is accumulating that A-type lamins and associated NE proteins are key 
regulators of “outside-in” and “inside-out” signaling, and that mechanotransduction 
functions may be impaired by prelamin A and progerin, especially in mechanically-
stressed tissues [45]. Compared with normal SS, low SS suppresses EC expression of 
nesprin2 and lamin A, and this suppression might subsequently modulate the activation 
of important transcription factors, leading to EC dysfunction and subendothelial 
migration of blood-borne immune cells [46]. This view is supported by the finding that 
siRNA-mediated reduction of lamin A/C expression in ECs facilitates subendothelial 
migration of T cells, possibly due to the presence of a less stiff EC layer [47*]. 

Song et al. [48] investigated the effects of SS on the expression of mechanotransduction 
proteins in the aorta of mLMNA+ mice, a progeroid transgenic mouse model carrying a 
human bacterial artificial chromosome that harbors the common c.1824C>T (G608G) 
HGPS mutation [24]. In these progerin-expressing mice, medial VSMCs of the ascending 
aorta subjected to high SS showed signs of vascular disease correlating with dysregulation 
of mechanotransduction proteins, including vimentin, which was not observed in 
descending aorta [48]. Importantly, SS applied ex vivo to the descending aorta of 
mLMNA+ mice caused a significant reduction in vimentin mRNA and protein levels but 
did not affect its expression in wild-type tissue. Increased sensitivity of progerin-
expressing VSMCs to pro-atherogenic SS may therefore contribute to vascular disease in 
progeria. It will be interesting to investigate whether prelamin A and progerin exacerbate 
SS-mediated EC dysfunction and subendothelial migration of circulating immune cells, 
as well as other pro-atherogenic functions of immune cells. 

In differentiated ECs, the anti-retroviral Atazanavir induces prelamin A accumulation and 
promotes intercellular adhesion molecule 1 (ICAM1)-dependent monocyte adhesion to 
ECs [49]. In line with this observation, NF-kB activation and secretion of high levels of 
pro-inflammatory cytokines occur in prelamin A-expressing Zmpste24-/- and progerin-
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expressing LmnaG609G/G609G mice, and NF-kB inhibition prevents age-associated features 
and extended longevity in these progeroid models [50]. In addition, alterations in the 
many nuclear functions modulated by lamin A may contribute to vascular cell senescence 
and dysfunction. For example, accumulation of prelamin A isoforms causes genomic 
instability through diverse mechanisms, including telomere dysfunction [51], increased 
oxidative stress and DDR [39,52], abnormal chromosome segregation during mitosis 
[53*], epigenetic changes [54,55], and dysregulated gene transcription [4,56]. Prelamin 
A isoforms can also inhibit vascular repair by inducing senescence of stem cells and their 
progenitors [16,41]. Remarkably, repression of the antioxidant NRF2 pathway has been 
proposed as a driver of HGPS, with NRF2 reactivation decreasing oxidative stress and 
alleviating HGPS mesenchymal stem cell viability defects in an animal model [57**]. 
Mitochondrial dysfunction may also contribute to progerin-induced oxidative stress [58].  

 
CARDIAC ELECTRICAL DEFECTS IN PROGERIA 

Myocardial infarction and stroke resulting from widespread atherosclerosis are 
considered the main causes of death in HGPS [8,11,12**,13]. Several studies have also 
demonstrated cardiac electrical defects in HGPS patients and progeroid mice. Merideth 
et al. performed a thorough clinical evaluation of 15 HGPS patients aged between 1 and 
17 years [11]. Electrocardiographic testing showed long QT intervals in five children, 
including the three oldest. We recently confirmed and extended these findings by 
analyzing another cohort of 15 HGPS patients aged between 2 and 19 years [14**]. Half 
of the patients showed overt repolarization abnormalities in at least one 
electrocardiogram, and these abnormalities were highly evident at advanced disease 
stages. HGPS patients also exhibited significant T-wave flattening, which was 
exacerbated with age. Although heart rate and PR interval were within the physiological 
range for all HGPS patients, heart rate in older patients tended to be slower and PR 
interval larger. Studies in progerin-expressing LmmaG609G/G609G mice [25] and prelamin 
A-expressing Zmpste24-/- mice [14**] revealed fibrosis-unrelated bradycardia as well as 
PQ interval and QRS complex prolongation with age. In addition, patch-clamping in 
Zmpste24-/- cardiomyocytes demonstrated prolonged duration of calcium transients and 
reduced sarcoplasmic reticulum calcium loading capacity and release, consistent with the 
absence of isoproterenol-induced ventricular arrhythmias in Zmpste24-/- mice. 
Conduction defects in HGPS patients and Zmpste24-/- mice are accompanied by overt 
mislocalization of connexin 43 [14**], a gap-junction protein which is essential for 
proper intercellular electrical coupling between cardiomyocytes and for action potential 
spread during each cardiac cycle.  

Collectively, these studies suggest that cardiac electrical defects associated with impaired 
cardiomyocyte connectivity might cause cardiac rhythm alterations and premature death 
in HGPS. Future studies are warranted to establish direct causal connections between 
prelamin A or progerin accumulation and cardiac abnormalities in HGPS, and to elucidate 
the underlying mechanisms (e.g., how these proteins cause connexin 43 mislocalization). 
Such studies may pave the way to new therapies for HGPS patients. 

 

CONCLUDING REMARKS 

A-type lamins regulate nuclear architecture and multiple cell functions, including DNA 
replication and repair, higher-order chromatin organization, signal transduction, and gene 
transcription. Interest in A-type lamins has increased with the discovery that abnormal 
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accumulation of prelamin A or its mutant form progerin cause progeroid syndromes 
characterized by excessive CVD and premature death. Despite major progress in the last 
decade, future studies are warranted to continue elucidating the functional consequences 
of the many interactions that prelamin A and progerin maintain with other ubiquitous or 
tissue-specific proteins, and how they promote atherosclerosis, calcification, and cardiac 
electrical defects. There are exciting prospects for high-throughput technologies in 
combination with functional studies targeting candidate factors and the generation of new 
conditional or tissue-specific small and large animal progeria models. These studies will 
help to expedite the identification of new targets and the translation of basic knowledge 
into effective therapies for HGPS. Because non-HGPS individuals express low levels of 
prelamin A and progerin in aging cells and tissues, including cardiovascular tissues, 
efforts to find a cure for premature aging syndromes might also help to promote healthy 
aging in the general population. 
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FIGURE LEGENDS 

FIGURE 1: DEFECTIVE PRELAMIN A PROCESSING IN HGPS: GENES AND 
PROTEINS. (A) In cells carrying the wild-type LMNA sequence, normal splicing 
between exons 11 and 12 occurs and the precursor prelamin A is synthesized from LMNA 
mRNA. Through sequential post-translational modifications, prelamin A is rapidly 
processed to mature lamin A, which lacks the farnesylated and carboxymethylated 
prelamin A C-terminus. Inactivating mutations in the ZMPSTE24 gene cause the aberrant 
nuclear accumulation of permanently farnesylated and carboxymethylated prelamin A 
and accelerate aging. (B) Most HGPS patients carry in heterozygosis a de novo dominant 
synonymous mutation in the LMNA gene (c.1824C>T: GGC>GGT; p.G608G). During 
pre-mRNA processing, this point mutation favors the use of a cryptic splice site in exon 
11, leading to the synthesis of progerin, a mutant form of prelamin A which lacks 50 
aminoacid residues encompassing the ZMPSTE24 cleavage site. Like prelamin A, 
progerin retains the farnesyl and carboxymethyl modifications at the C-terminus and 
accumulates in the nuclear envelope.  

FIGURE 2: CELLULAR AND ORGANISMAL PHENOTYPIC CHANGES 
INDUCED BY PROGERIN. A-type lamins maintain nuclear architecture and regulate 
multiple cell functions, including higher-order chromatin organization, DNA replication 
and repair, signal transduction, gene transcription, and cell proliferation. Progerin 
expression in HGPS patients provokes, in a dominant-negative manner, cellular damage 
due to alterations in all lamin A-regulated functions (left). These cellular alterations cause 
organismal damage and accelerate aging (right). The cause of death in most HGPS 
patients is exacerbated cardiovascular disease, mainly through myocardial infarction or 
stroke. 

FIGURE 3: MOLECULAR MECHANISMS DRIVING CALCIFICATION IN 
HGPS. Extracellular pyrophosphate (PPi) is a major inhibitor of VC mainly produced by 
vascular smooth muscle cells (VSMCs) from hydrolysis of ATP, another endogenous 
calcification inhibitor. Progerin accumulation in VSMCs impairs mitochondrial function, 
inhibiting intracellular ATP production. Extracellular ATP availability for PPi synthesis 
is reduced through increased activity of nucleotide pyrophosphatase/phosphodiesterase-
1 (eNTPD1). Extracellular PPi levels are further reduced by abnormally high tissue-
nonspecific alkaline phosphatase (TNAP) activity, which hydrolyzes PPi. Progeroid mice 
also have increased alkaline phosphatase (ALP) activity and reduced ATP and PPi levels 
in serum. Treatment of progeroid mice with PPi reduces aortic calcification, indicating 
that these changes in local and systemic polyphosphate metabolism contribute to calcium 
phosphate deposition in the vessel wall. 

FIGURE 4: PRELAMIN A ACCUMULATION IN VSMCs PROMOTES DNA 
DAMAGE, OSTEOGENIC DIFFERENTIATION AND CALCIFICATION. 
Prelamin A accumulation in VSMCs activates the cell-cycle inhibitor p16 and the DNA 
damage response-related kinases ataxia-telangectasia-mutated (ATM) and ataxia-
telangectasia Rad3 (ATR). This is accompanied by induced expression of osteogenic 
transcription factors, including osteocalcin, osteopontin, and osteoblast-specific Run-
related transcription factor-2 (RUNX2), which drive the osteogenic differentiation of 
VSMCs. This is followed by the secretion of pro-calcifying factors, including interleukin-
6 (IL-6), bone morphogenic protein 2 (BMP2) and osteoprotegerin, further promoting 
calcification. 
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