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ABSTRACT 

 

Background: The development of diagnostic tools to assess restenosis risk after stent deployment may 

enable the intervention to be tailored to the individual patient, for example by targeting drug-eluting 

stent’s use to high risk patients, with the goal of improving safety and reducing costs. The CCNB1 

gene (encoding cyclin B1) positively regulates cell proliferation, a key component of in-stent 

restenosis (ISR). We therefore hypothesized that single nucleotide polymorphisms (SNPs) in CCNB1 

may serve as useful tools in risk stratification for ISR.  

 

Methods and Results: We identified 3 SNPs in CCNB1 associated with increased restenosis risk in a 

cohort of 284 patients undergoing coronary angioplasty and stent placement (rs350099: TT vs. 

CC+TC, OR=1.82, 95%CI=1.09-3.03, p=0.023; rs350104: CC vs. CT+TT, OR=1.82, 95%CI=1.02-

3.26, p=0.040; rs164390: GG vs. GT+TT, OR=2.27, 95%CI=1.33-3.85, p=0.002). These findings were 

replicated in another cohort study of 715 patients (rs350099: TT vs. CC+TC, OR=1.88, 95%CI=0.92-

3.81, p=0.080; rs350104: CC vs. CT+TT, OR=2.23, 95%CI=1.18-4.25, p=0.016; rs164390: GG vs. 

GT+TT, OR=1.87, 95%CI=1.03-3.47, p=0.040). Moreover, the haplotype containing all three risk 

alleles is associated with higher CCNB1 mRNA expression in circulating lymphocytes and increased 

ISR risk (OR=1.43, 95%CI=1.00-1.823, p=0.039).The risk variants of rs350099, rs350104 and 

rs164390 are associated with increased reporter gene expression through binding of transcription 

factors NF-Y, AP-1 and SP1, respectively.  

 

Conclusions: Allele-dependent transcriptional regulation of CCNB1 associated with rs350099, 

rs350104 and rs164390 affects the risk of ISR. These findings reveal these common genetic variations 

as attractive diagnostic tools in risk stratification for restenosis.  

 

KEYWORDS: restenosis; stent; single nucleotide polymorphism; CCNB1 
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INTRODUCTION 

 

The use of stents has increased the safety of percutaneous coronary interventions (PCI) and decreased 

restenosis rates compared with conventional balloon angioplasty.1 Preclinical studies demonstrate a 

pivotal role of cell cycle regulatory genes in vascular smooth muscle cell (VSMC) proliferation and 

neointimal lesion development induced by mechanical injury,2 and restenosis incidence has been 

reduced to 5-10% by the use of drug-eluting stents (DES) that locally deliver cytostatic drugs that limit 

VSMC hyperplasia, compared with 20-30% in patients revascularized with bare metal stents (BMS).1, 

3, 4 However, probably as a consequence of delayed target vessel reendothelialization due to reduced 

endothelial cell proliferation, DES deployment increases the occurrence of late stent thrombosis, which 

is associated with a high mortality rate.1 Patients fitted with DES are therefore submitted to longer 

duration dual antiplatelet therapy than patients receiving BMS. In addition to these clinical limitations, 

DES are costlier than BMS. The development of diagnostic tools to assess restenosis risk may enable 

the intervention to be tailored to the individual patient, for example by targeting DES use to patients at 

higher risk, with the goal of improving safety and reducing costs. 

The incidence of restenosis is highly influenced by clinical, biological, procedural and lesion-

related risk factors.4 However, information on restenosis biomarkers is scarce. Single nucleotide 

polymorphisms (SNPs) are recognized as suitable markers of disease predisposition.5 SNPs in the 

human genome occur on average once every 300 nucleotides (~10 million SNPs), making them the 

most common type of genetic variation. SNPs reported to influence restenosis risk affect platelet 

activation, leukocyte recruitment, the inflammatory response, metalloproteinases, lipid metabolism, 

oxidative stress, nitric oxide, the renin-angiotensin system and cell proliferation (reviewed in).4, 6, 7 

Interestingly, the 838C>A SNP in CDKN1B (encoding the tumor suppressor p27Kip1) has been 

associated with restenosis risk after coronary stenting, which might be due to augmented VSMC 

proliferation caused by reduced CDKN1B promoter activity in patients carrying the risk allele.8 

However, other SNPs in CDKN1B or in TP53 (encoding the tumor suppressor p53) showed lack of 

association with restenosis risk.8, 9 In the present study, we investigated a potential association of 

restenosis risk with SNPs in the CCNB1 gene (encoding cyclin B1). CCNB1 is essential for cell 

proliferation and its ablation in the mouse is embryonically lethal.10 Several regulatory mechanisms are 

necessary to ensure that cyclin B1 protein accumulates appreciably only during the G2/M cell cycle 

transition, and deregulated CCNB1 transcription leading to aberrantly high levels of cyclin B1 

throughout the cell cycle is associated with excessive hyperplasia in several human cancers.11 Several 

lines of evidence indicate that CCNB1 is also important in the context of cardiovascular disease: its 

expression has been reported in human restenotic tissue obtained by directional coronary 

atherectomy,12 it is induced in balloon-injured rat carotid artery,13, 14 and its inhibition reduces 

neointimal thickening in this animal model.15 Herein, we present evidence from two independent 

cohorts of patients undergoing coronary stent deployment (Clinica Mediterranea and GEnetic risk 

factors for In-Stent Hyperplasia study Amsterdam: GEISHA)8 cohorts showing that alleles of the SNPs 

rs350099, rs350104 and rs164390, located in regulatory regions of CCNB1, are associated with higher 

CCNB1 mRNA expression and increased risk of in-stent restenosis (ISR) after PCI. We furthermore 

identify molecular mechanisms that might account for this genotype-disease association.  
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METHODS 

 

Patients. The Clinica Mediterranea cohort included 434 patients scheduled for PCI in Clinica 

Mediterranea (Naples, Italy) who were recruited between January- December 2004. Inclusion criteria 

were elective PCI with planned cobalt-chromium stent, and de novo lesion in a native coronary artery. 

Of the initial cohort, 101 patients were excluded because of implantation of at least 1 DES (n=77) or 

inadequate blood sample storage (n=24), leaving a final total of 333 enrolled patients. Of these, 284 

(85%) underwent a routine coronary angiographic follow-up 6-9 months after PCI and were included 

in this study. The cobalt-chromium stents implanted were MultiLink Vision (Abbott Vascular, Abbott 

Park, Illinois) and Driver (Medtronic CardioVascular, Santa Rosa, California). All patients were 

treated with 100 mg aspirin and 75 mg clopidrogel daily for at least 1 month after PCI. The local ethics 

committee approved the study protocol, and all patients gave written informed consent. Peripheral 

blood samples were taken from all patients before PCI. Samples were collected into trisodium-citrate 

tubes and immediately placed on ice. Within 1 hour of collection, blood samples were centrifuged 

(4000 rpm, 20 minutes) and plasma harvested and stored at -80°C until analysis. Plasma total 

cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides were measured by enzymatic 

techniques. Estimated glomerular filtration rate (eGFR) was calculated by applying the modification of 

diet in renal disease formula. Chronic kidney disease was defined as an eGFR<50 ml/min/1.73m2. 
Clinical characteristics of patients are summarized in Supplemental Table-S1. Patients received 

intracoronary isosorbide dinitrate (0.1-0.3-mg) prior to initial and final angiograms to achieve maximal 

vasodilatation. Angiographic measurements were performed with an automated computer-based 

system (Cardiovascular Angiographic Analysis Syste; Pie Medical Imaging; Maastricht, The 

Netherlands). Follow-up restenosis was analyzed by measurement of minimal lumen diameter by 

independent observers blinded to the genotype data. The following variables were also assessed: acute 

gain, defined as the difference between the minimal lumen diameter before and after the procedure; 

late loss, defined as the minimal lumen diameter after the procedure minus the minimal lumen 

diameter at follow-up; and loss index, defined as the average ratio of late loss to acute gain. Binary 

angiopraphic ISR was defined as >50% narrowing of the lumen diameter in the target segment 

(defined as all portions of the vessel that received treatment within the stent zone, including the 

proximal and distal 5-mm margins). Angiographic characteristics and major adverse coronary events 

(MACE) are summarized in Supplemental Table-S2 and -S3, respectively.  

The clinical and angiographic characteristics of the GEISHA patients who were successfully 

treated for stable angina via BMS placement in a native coronary artery have been described 

previously.8  All patients were treated with 100 mg aspirin and 250 mg ticlopidine BID or 75 mg 

clopidrogel daily for one month after PCI and 100 mg aspirin thereafter. Quantitative coronary 

angiography was performed between 6 and 12 months after BMS placement as described,16 and 

clinical follow-up at 1 year was obtained. The primary endpoints were angiographic binary ISR (>50% 

diameter stenosis) and late lumen loss in minimal luminal diameter at follow-up. The secondary 

endpoints were coronary artery bypass grafting (CABG), target lesion revascularization (TLR, defined 

as repeat revascularization of the stented segment or within 5 mm margins proximal or distal to the 

stent by either repeat PCI or CABG), repeat PCI, non-fatal myocardial infarction, death, or the 

combined endpoint of MACE.  

 

Genotyping of SNPs. Blood samples from patients of Clinica Mediterranea cohort were analyzed by 

SNPlex according to the manufacturer’s recommendations (Applied Biosystems, Carlsbad, California, 

US). Polymorphisms were genotyped in the healthy sample by high resolution melting curves using a 

480 LightCycler System and LightCycler 480 High Resolution Melting Master Kit (Roche, Basel, 

Switzerland). Supplemental Table-S4 shows the sequence of the primers used to PCR amplify the 
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genomic regions containing each SNP. The genotype for each curve was identified by direct 

sequencing of 10 samples with similar curves using a 3730 sequencing analyzer under standard 

conditions (Applied Biosystems). In the GEISHA cohort, SNPs were genotyped using the Taqman 

assay (Applied Biosystems). Reactions were performed using the LC480 (Roche Diagnostics).  

 

Statistical analysis. Results are expressed as means±SEM for in vitro experiments and as mean±SD 

for the cohort studies. Differences in continuous values in restenotic versus non-restenotic subjects (as 

defined by the angiographic lesion progression) were performed by the Student’s t test or the Mann-

Whitney U test, as appropriate. Categorical variables were analyzed by 2 test. In both cohorts, 

analysis for possible deviations of the genotype distribution from that expected for a population in 

Hardy-Weinberg equilibrium was performed by 2 test. Logistic regression analysis was performed to 

determine the association between the genotypes and ISR or TLR (repeated PCI or CABG). For 

genetic association, we first tested the codominant model and then used dominant or recessive models 

if two genotypes showed a similar effect. The association between the genotypes and TLR was also 

assessed by Cox proportional regression analysis. Follow-up ended for each individual at the time of 

the first occurrence of TLR. Patients without TLR were censored at 1 year after stent placement and 1 

patient who died during follow-up was censored at the date of death. The proportional hazards 

assumption was examined by plotting the log(-log(survival)) versus the log of survival time. Event-

free survival curves were calculated by Kaplan-Meier analysis, and differences between groups were 

calculated with the log-rank statistic. Haplotypes in the Clinica Mediterranea cohort were inferred with 

SNAPStats using the Expectation Maximization algorithm and Odds Ratio was calcutaled by logistic 

regression.17  For the GEISHA study, from the obtained unphased SNP genotype data, haplotype 

frequencies and their effect on risk of TLR were estimated using weighted Cox regression as 

described.18 Based on the inferred haplotypes, patients were grouped as those having one or no copies 

of the risk haplotype (TCG) and as those having two copies of the risk haplotype. Differences were 

considered statistically significant at p<0.05, as determined by paired 2-sided Student’s t test 

(experiments with two groups) or one-way or two-way ANOVA followed by Bonferroni’s or 

Dunnett’s test (experiments with more than two groups). Statistical analyses were performed with 

SPSS (SPSS Inc., Chicago, Illinois), SNPstat17 and GraphPad-Prism (GraphPad Software, LaJolla, 

CA). 

 

 

 

 

 

RESULTS 

 

SNPs rs350099, rs350104 and rs164390 in CCNB1 are associated with ISR risk. To investigate 

whether polymorphic variants in CCNB1 are associated with risk of ISR, we selected SNPs located in 

the transcriptional regulatory region (promoter and 5’-untranslated region) that have a minor allele 

frequency greater than 0.2. The 5 SNPs that fulfilled these criteria (Fig.1A) were genotyped in a cohort 

of 284 patients from Clinica Mediterranea who underwent coronary revascularization with BMS and 

angiographic follow-up (see Methods and Supplemental Tables-S1,-S2,-S3).  Of these patients, 116 

developed ISR. Genotyping was successful in >95% of samples for SNPs rs350099 (-957[T/C]), 

rs350104 (-475[T/C]), and rs164390 (+102[G/T]), and in 86% of samples for rs352626 (-710[C/T]) 

and rs8192258 (1055[-/A]). Genotype distribution of the non-restenotic control group was in Hardy-

Weinberg equilibrium (p>0.05). Statistical analysis revealed a significant association between -



 6 

957[T/C], -475[T/C] and +102[G/T] allele distribution and the incidence of angiographic (binary) 

restenosis, which was significant in crude analysis (not shown) and after adjustment for variables 

including age, gender, hypertension, diabetes mellitus, type of angina, statin therapy and family history 

of coronary artery disease (CAD) (Table 1). Moreover, the false positive report probability test19 was 

0.17 for a prior probability of 0.25, which supports a genuine association of SNPs -957[T/C], -

475[T/C] and +102[G/T] with ISR risk in this cohort.  

We next analyzed the GEISHA population for the three SNPs that exhibited significant 

association in our pilot study (-957[T/C], -475[T/C], +102[G/T]). As in Clinica Mediterranea 

population, BMS were used in the GEISHA cohort. Clinical and angiographic characteristics have 

previously been described in detail.8 Of a total of 715 patients, DNA was obtained from 688, and TLR 

occurred in 55 patients. Failure of genotyping for -957[T/C], -475[T/C] and +102[G/T] was 9%, 1.9% 

and 1.5%, respectively. All genotype distributions were in Hardy-Weinberg equilibrium (p>0.05). 

Consistent with the results in the Clinica Mediterranea cohort, we found in GEISHA a statistically 

significant association between -475[T/C] and +102[G/T] and clinical ISR (based on TLR occurrence) 

after adjusting for age, gender, hypertension, smoking, diabetes mellitus, statin therapy and family 

history of CAD (Table 2). We also observed increased risk in -957TT compared with -957(TC+CC) 

patients (Odds Ratio=1.88), which almost reached statistical significance (p=0.080, Table 2). 

Moreover, Kaplan-Meyer analysis revealed reduced cumulative TLR-free survival in carriers of the 

ISR risk genotypes of each SNP, with differences reaching statistical significance for +102[G/T] (Log-

rank p=0.040) or very close to significance (-957[T/C]: Log-rank p-value=0.057; -475[T/C]: Log-rank 

p=0.056) (Figure 2). To explore the strength of the observed associations, we assessed whether these 

associations persisted after Cox proportional regression analysis including age, gender, hypertension, 

smoking, diabetes, statin therapy and family history of CAD. Our results demonstrate increased risk of 

clinical ISR in -957TT (Hazard Ratio [HR], 1.95; CI, 0.99-3.83; p=0.053), -475CC (HR, 2.38; CI, 

1.01-5.61; p=0.048) and +102GG (HR, 2.04; CI, 1.04-4.01; p=0.040) patients when considering the 

interval of time between stent deployment and TLR (Table 3). 

  

The haplotype containing all three restenosis-risk allelic variants is associated with augmented 

risk of ISR and CCNB1 mRNA expression. Having demonstrated that the -957T, -475C and +102G 

alleles are associated with higher ISR risk, we analyzed the CCNB1 haplotype containing these three 

polymorphic variants. In Clinica Mediterranea cohort, four haplotypes were identified with frequencies 

above 1% in both the restenotic and non-restenotic groups (Haplotypes 1-4, Supplemental Table-S5). 

Analysis by the D, D’ and R2 methods revealed that -957[T/C], -475[C/T] and +102[G/T] are in 

linkage disequilibrium (Supplemental Table-S6). Haplotype 1, containing the restenosis risk alleles 

of all three SNPs (T/C/G), was the most frequent (48.8%) in the Clinica Mediterranea population 

(Supplemental Table-S5) and exhibited statistically significant association with increased ISR risk 

when compared to all other haplotypes (OR=1.43, 95%CI=1.00-1.823, p=0.039) (Fig.3A). The 

analysis of this association was very similar after adjustment for multiple variables, including age, 

gender, hypertension, diabetes mellitus, statin therapy, type of angina and family history of CAD 

(OR=1.41, 95%CI=0.99-2.00, p=0.055).  

We also performed haplotype analysis in the GEISHA cohort where haplotype 1 was also the 

most frequent (47.6%, Supplemental Table-S7). We found statistically significant association with 

increased TLR when comparing haplotype 1 versus all other haplotypes (HR=2.87; CI=1.17-7.04; 

p=0.02, Cox regression analysis with data corrected for age, hypertension, smoking, diabetes mellitus, 

statin therapy and family history of CAD). In addition, Kaplan-Meyer estimates of TLR-free survival 

also showed decreased survival in haplotype 1 compared with all other haplotypes with a p-value very 

close to significance (p=0.058) (Fig. 3B).  
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Taken together, these studies suggest a significant association between haplotype containing all 

three restenosis-risk allelic variants and increased risk of ISR. We next sought to investigate possible 

associations between CCNB1 expression and haplotypes 1 and 2, the most frequent haplotypes in our 

cohorts (see Supplemental Table-S5, Table-S7). Analysis of peripheral blood lymphocytes isolated 

from healthy volunteers revealed a 2.23-fold increase in CCNB1 mRNA expression in haplotype 1 

versus haplotype 2 carriers (p=0.0044, Fig.3C; see subjects characteristics in Supplemental Table-

S8). 

 

The restenosis-risk T allelic variant of -957[T/C] generates a binding site for Nuclear Factor-Y 

(NF-Y). Since -957[T/C], -475[T/C] and +102[G/T] are located in potential regulatory regions in the 

CCNB1 gene and are associated with mRNA expression level in circulating lymphocytes, we assessed 

whether the restenosis-risk allelic variants of these SNPs cause increased CCNB1 expression through 

differential transcription factor binding. Previous studies revealed that the CCNB1 promoter contains 

two CCAAT boxes at positions -17/-13 and +16/+20 that are essential for gene transcription through 

binding of NF-Y.20 Our in silico analysis predicted that the restenosis-risk T allelic variant of -

957[T/C], but not the C allele, generates an additional CCAAT motif in the CCNB1 promoter 

(Fig.1B). We evaluated the functionality of this putative CCAAT box by electrophoretic mobility shift 

assays (EMSAs) using nuclear extracts of HeLa cells and radiolabeled probes (Supplemental Table-

S9). Incubation with the NF-Y(-25/-7) probe, containing the canonical CCAAT box at position -17/-13 

in the CCNB1 promoter, generated a retarded band (Fig.4A, lane 2) that was efficiently competed out 

by an excess of either unlabeled NF-Y(-25/-7) sequence (lanes 3,4) or an oligonucleotide spanning the 

-957T sequence (lanes 5,6). This retarded band was not competed out by an equivalent molar excess of 

the unlabeled -957C sequence (lanes 7,8) or the mutated NF-Y(-25/-7) sequence (NF-Y mutant, lanes 

9,10). We also generated radiolabeled -957T and -957C probes to assess DNA-binding activity directly 

associated to these sequences. Consistent with the results of the competition studies, the -957T probe 

generated a retarded band with the same electrophoretic mobility as that produced by NF-Y(-25/-7), 

which was specifically supershifted with anti-NF-YB antibody (Fig.4B, lanes 1-8), and was not 

observed in binding reactions with -957C probe (Fig.4B, lanes 9-12). Thus, the restenosis-risk -957T 

allele of rs350099, but not the -957C variant, generates a NF-Y binding site in the human CCNB1 

promoter.  

 

The restenosis-risk C allelic variant of -475[T/C] generates a binding site for activator protein 1 

(AP-1) with higher affinity than the T allele. Our in silico analyses predicted that the C allelic 

variant of -475[C/T], but not the T allele, generates an AP-1 binding site (Fig.1B). Incubation of 

nuclear extracts from U2OS cells with probes for -475C (Fig.5A, lanes 6,14) or -475T (lanes 10,19) 

generated a major retarded band of the same electrophoretic mobility as that obtained with AP-1 

consensus probe (lane 2). This band was efficiently competed out with an excess of unlabeled -475C, -

475T or AP-1 consensus oligonucleotides (lanes 3, 7, 11, 15, 16, 17, 20, 21, 22), but not with 

unrelated NF-Y consensus (lanes 4,8,12). We noted that the -475C probe produced a more intense 

retarded nucleoprotein complex than the -475T probe (Fig.5A, lanes 6,14 vs. 10,19). Consistent with 

this finding, unlabeled -475C oligonucleotide was more efficient than -475T oligonucleotide at 

competing out DNA-binding activity associated with AP-1 consensus probe (Fig.5B).  

We next carried out supershift experiments using antibodies specific for the canonical AP-1 

family members c-Fos and c-Jun. Anti-c-Fos (Fig.5C, upper autoradiograph) and anti-c-Jun (Fig. 

5C, lower autoradiograph) both produced a supershift when tested against AP-1 consensus, -475C or 

-475T probes (lanes 3,6,9,12,15,17), but not against a probe containing the consensus binding site for 

specificity protein 1 (SP1) (data not shown). Consistent with the results of Fig.5A, the anti-c-Fos and 

anti-c-Jun supershifted bands were more intense with -475C than with -475T probe (Fig.5C, lane 6 vs. 
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9, and 15 vs. 17). Thus, the ISR-risk -475C allele of rs350104 in the human CCNB1 promoter binds 

AP-1 factors with higher affinity than -475T. 

 

The restenosis-risk G allelic variant of +102G[G/T] in CCNB1 generates a binding site for SP1. 

The G allele of +102[G/T] generates a GC-rich sequence very similar to the consensus SP1 binding 

site.21 Incubation of U2OS nuclear extracts with an SP1 consensus probe generated a retarded band 

(Fig.6A, lanes 2,9) that was efficiently competed by excess unlabeled oligonucleotides corresponding 

to SP1 consensus (lanes 3,10) or to +102G (lanes 4-7), but not to +102T (lanes 11-14). Moreover, a 

+102G probe (Fig.6B, lane 7), but not the +102T probe (lane 12), generated a retarded band with the 

same electrophoretic mobility as that obtained with the SP1 consensus probe (lane 2). The retarded 

band obtained with SP1 and +102G probes was supershifted with anti-SP1 antibody (Fig.6B, lanes 

4,9) but not with isotype-matched anti-MEF2C antibody (Fig.6B, lanes 5,10). Thus, the ISR-risk 

+102G allele of rs164390, but not the +102T allele, generates an SP1 binding site in the human 

CCNB1 promoter. 

 

The -957T, -475C and +102G restenosis-risk alleles increase reporter gene transcription. We next 

tested whether the three restenosis-risk alleles supported enhanced transcription by their corresponding 

putative transcription factors (NF-Y for -957T, AP-1 for -475C and SP1 for +102G). We transiently 

transfected U2OS cells with pGL3-luciferase reporters driven by three tandem repeats of each of the 

polymorphic variants of -957[T/C], -475[C/T] and +102[G/T] (supplemental Table-S10). The 3x(-

957T)-luciferase construct increased reporter gene activity two-fold compared with control pGL3-

luciferase (dashed line), whereas 3x(-957C)-luciferase had no effect (Fig.7A, white bars). 

Importantly, the promoter activity of 3x(-957T)-luciferase was significantly reduced by co-expression 

of a dominant-negative NF-YA mutant (NF-YAdn), while 3x(-957C)-luciferase activity was 

unaffected (Fig.7A, black bars). We also found that c-Fos overexpression, by transfection with 

pEGFP-c-Fos, significantly augmented promoter activity associated with 3x(-475C) compared with 

both pGL3 and 3x(-475T) (Fig.7B). Moreover, additional luciferase activity was achieved with 

3x(+102G), but not with 3x(+102T) when SP1 was overexpressed (Fig.7C). These results suggest that 

the NF-Y, AP-1 and SP1 DNA-binding sites generated in the restenosis-risk -957T, -475C and +102G 

alleles are functional. 

 

 

 

 

DISCUSSION 

 

In this study, we show that the SNPs rs350099 (-957[T/C]), rs350104 (-475[C/T]) and rs164390 

(+102[G/T]) located in the 5’-regulatory region of the human CCNB1 gene are associated with risk of 

developing restenosis after coronary stent deployment in two independent cohorts and provide 

molecular insight into these genotype-disease associations. We restricted our analysis to patients who 

received a BMS, in order to avoid potential effects of antiproliferative drugs used in DES that can 

significantly reduce cell-cycle gene expression,13, 22 and may explain negative results observed in other 

genetic association studies focused on cell-cycle regulators.9, 23 We find increased ISR risk in patients 

carrying haplotype 1 (-957T/-475C/+102G), which contains all three restenosis-risk alleles. 

Interestingly, circulating lymphocytes from individuals carrying haplotype 1 have higher CCNB1 

mRNA levels than those carrying haplotype 2 (-957C/-475T/+102T). Consistent with the notion that 

disease susceptibility in humans is influenced by common SNPs that affect gene transcription through 

allelic-dependent transcription factor recruitment,24 we find that the restenosis-risk alleles of -
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957[T/C], -475[C/T] and +102[G/T] generate functional binding sites for NF-Y, AP-1 and SP1, 

respectively, as revealed by DNA-binding and luciferase reporter assays. Increased recruitment of 

these transcription factors to the CCNB1 promoter in individuals with haplotype 1 might therefore 

augment ISR risk by increasing expression of CCNB1, a key positive regulator of cell proliferation and 

neointimal thickening10, 15 (Fig.8).  

Individual patient restenosis risk is to date based on a reduced number of clinical, biological, 

lesion-related and procedural factors,  and efforts to identify high-risk patients based on these variables 

have been only partially successful until now.4 Recently, a predictive model utilizing these common 

variables has been developed to identify patients that will benefit from reduced target vessel 

revascularization by DES deployment.25 However, early prediction accuracy of these models may still 

be improved by using additional individual specific biomarkers such as genetic traits. By using a gene 

candidate approach, we have identified three polymorphisms in the CCNB1 associated to increased 

angiographic restenosis risk in the Clinica Mediterranea cohort of patients who underwent PCI with 

BMS implantation. Importantly, our studies in the larger GEISHA cohort revealed a statistically 

significant association with increased clinical ISR (defined as TLR) for SNPs -475[C/T] and 

+102[G/T], which was close to significance for SNP -957[T/C] (p=0.080) and remained significant 

after Cox proportional regression analysis. Individual candidate gene studies have limitations,7 

however our validation in two independent cohorts and functional studies support the reliability of the 

identified associations. Studies in larger cohorts and prospective studies are nevertheless necessary to 

assess whether diagnostic kits based on genotyping these SNPs in CCNB1 can improve the safety and 

cost-effectiveness of stent use. These studies should also evaluate whether prediction can be improved 

on the basis of combining CCNB1 SNPs and clinical, biological, lesion-related and procedural factors.  

Our functional studies identify likely molecular mechanisms that might underlie the ISR risk 

associated with -957[T/C], -475[C/T] and +102[G/T]. NF-Y (also called CCAAT-binding factor: CBF) 

is a ubiquitous heterotrimeric transcription factor formed from NF-YA, B and C subunits that is 

required for cell proliferation.26-31 We recently found that NF-Y is induced during atherosclerosis and 

restenosis in rodent models and humans, and promotes PDGF-BB-dependent CCNB1 expression, 

VSMC proliferation and neointimal lesion development in a mouse femoral artery denudation model.14 

The results in the current study demonstrate that the restenosis-risk T allele of -957[T/C], but not the C 

allele, generates a CCAAT box at position -959/-955 relative to the CCNB1 transcription initiation site 

which supports specific binding of NF-Y and drives NF-YA-dependent transcription of luciferase 

reporter plasmids. It is interesting to note that proper transcriptional regulation of several cell cycle-

regulated genes requires multiple promoter CCAAT motifs,32 possibly by stabilizing DNA-NF-Y 

complexes33 and increasing the DNA-binding affinity of neighboring co-activators34 (and references 

therein). It is therefore possible that the CCAAT motif at -959/-955 in -957TT homozygotes identified 

in the present work might cooperate with the -17/-13 and +16/+20 proximal CCAAT boxes to boost 

NF-Y-dependent CCNB1 transcription. 

Heterodimeric transcription factors of the AP-1 family control cell differentiation, apoptosis 

and proliferation in response to multiple physiological and pathological stimuli.35 AP-1 is induced after 

balloon angioplasty36-38 and stenting,39 and gene therapy against AP-1 reduces neointima development 

in animal models.36, 40, 41 Our data show that the restenosis-risk C allele of -475[T/C] in the CCNB1 

promoter binds AP-1 with higher affinity that the T variant, and that overexpression of the AP-1 

family member c-Fos significantly augments luciferase activity driven by a tandem repeat of -475C, 

while having no significant effect on a similar construct driven by -475T. Thus, the presence of the -

475C sequence in the CCNB1 promoter may enhance gene transcription through increased recruitment 

of AP-1 transcription factors. 

SP1 is an ubiquitous transcription factor that promotes cell growth by enhancing the expression 

of pro-proliferative genes whose promoters contain the consensus GC-rich sequence.21 We found that 

http://en.wikipedia.org/wiki/Consensus_sequence
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the presence of the high-risk ISR +102G allele, but not the +102T variant, generates a sequence that 

binds SP1 and confers SP1-dependent transcriptional activation in reporter assays. Bearing in mind 

previous studies reporting that two or more SP1 binding sites can cooperate in gene transactivation,21 

we speculate that enhanced CCNB1 expression in +102GG homozygous individuals may result from 

the cooperation between the SP1 binding site generated by +102G and the two SP1 target sequences 

present at -259/-255 and -140/-136, which have been shown to be required for efficient CCNB1 

transcriptional activation.21 

In summary, our findings suggest that allele-dependent transcriptional regulation of CCNB1 

associated with the SNPs rs350099, rs350104 and rs164390 affects ISR risk through differential 

recruitment of NF-Y, AP-1 and SP1 (Fig.8). Interestingly, Bouatia-Naji et al. 42 recently reported that 

the A allele of rs13431652 in the G6PC2 promoter generates a functional NF-Y-binding CCAAT box, 

and is strongly associated with elevated fasting plasma glucose in humans. Moreover, a mutation in the 

CCAAT box of the TERC promoter that abrogates NF-Y binding has been associated with human 

telomere disease, thus providing further evidence that allele-specific differences in the recruitment of 

NF-Y can contribute to human disorders.43 Likewise, common functional polymorphisms within the 

promoter of genes associated with lupus or CAD in diabetic patients influence AP-1 DNA-binding 

activity and gene expression.44, 45 Allele-specific SP1 activity may also explain the association between 

several SNPs and susceptibility to mild fasting hyperglycemia, atherothrombotic stroke, and lung, 

breast and ovarian cancer.44, 46-49 Regulation of human gene promoters by polymorphic NF-Y, AP-1 or 

SP1 sites thus appears to contribute to genetically-determined inter-individual variability in diverse 

pathophysiological scenarios. Remarkably, van Tiel and colleagues found that the -838C>A SNP in 

the CDKN1B gene (encoding the tumor suppressor p27Kip1) modulates promoter activity and is 

associated with restenosis risk after coronary BMS implantation.8 Validation in larger cohorts and 

prospective studies comparing head-to-head BMS and DES is necessary to assess whether genotyping 

of common SNPs in cell-cycle regulatory genes may assist physicians in targeting DES use to patients 

at the highest ISR risk in order to improve the safety and cost-effectiveness of stent use. Based on the 

recent results of a systematic testing of literature reported genetic variation associated with coronary 

restenosis,7 these studies should examine a possible joined effect of multiple genetic markers for 

predicting restenosis compared with individual candidate genes. 

 

 

 

CLINICAL PERSPECTIVE 

 

The use of drug-eluting stents (DES) that inhibit vascular smooth muscle cell (VSMC) 

proliferation significantly reduces in-stent restenosis (ISR). DES also inhibit endothelial cell 

proliferation, and ISR inhibition with these devices therefore comes at the price of delayed or 

incomplete reendothelialization, requiring longer-term antiplatelet therapy to prevent late in-stent 

thrombosis. The development of diagnostic tools to assess ISR risk may enable the intervention 

to be tailored to the individual patient, for example by targeting DES’ use to high risk patients. In 

the present study, we investigated a potential association of ISR risk with single nucleotide 

polymorphisms (SNPs) in the CCNB1 gene encoding cyclin B1, a positive cell cycle regulator 

which is expressed in human restenotic tissue and is essential for neointimal thickening in the rat 

carotid artery model of balloon angioplasty. By analyzing two independent cohorts, we show that 

the SNPs rs350099, rs350104 and rs164390 located in the 5’-regulatory region of the CCNB1 

gene are associated with higher CCNB1 mRNA expression and elevated ISR risk after coronary 

stent deployment. Our molecular studies indicate that these SNPs affect CCNB1 expression and 
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ISR risk through differential recruitment of the transcription factors NF-Y, AP-1 and SP1. 

Validation in larger cohorts and prospective studies comparing head-to-head DES and bare metal 

stents is necessary to assess whether genotyping rs350099, rs350104 and rs164390 may assist 

physicians in targeting DES use to patients at the highest ISR risk in order to improve the safety 

and cost-effectiveness of stent use. 
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Table 1. Statistical analysis of ISR risk associated with SNPs in the human CCNB1 gene: 

Clinica Mediterranea cohort 

 

 

SNP Genotype Total 

Binary 

restenosis 

p-value 

Odds 

Ratio 

95% CI 

-957[C/T] 

(rs350099) 

TT 125 61 (48.8%) 

0.023 

1.82 (TT 

vs 

CC+TC) 

1.09-3.03 

CC+CT 141 49 (34.7%) 

-475[C/T] 

(rs350104) 

CC 70 37 (52.8%) 

0.040 

1.82 (CC 

vs TT+TC) 

1.02-3.26 

CT+TT 188 73 (38.8%) 

+102[G/T] 

(rs164390) 

GG 103 54 (52.4%) 

0.002 

2.27 (GG 

vs 

TT+GT) 

1.33-3.85 

GT+TT 164 58 (35.4%) 

 

 

The Odds ratios were estimated using a logistic model adjusted for age, gender, hypertension, 

diabetes mellitus, type of angina, statin therapy at time of stenting and family history of CAD. 
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Table 2. Statistical analysis of ISR risk associated with SNPs in the human CCNB1 gene: 

GEISHA cohort 

 

SNP Genotype Total TLR p-value Odds Ratio 95% CI 

-957[C/T] 

(rs350099) 

TT 146 17 (11.64%) 

0.080 

1.88 (TT vs 

CC+TC) 

0.92-3.81 

CC+CT 479 32 (6.68%) 

-475[C/T] 

(rs350104) 

CC 89 13 (14.61%) 

0.016 

2.23 (CC vs 

TT+TC) 

1.18-4.25 

CT+TT 586 41 (6.99%) 

+102[G/T] 

(rs164390) 

GG 159 19 (11.95%) 

0.040 

1.87 (GG vs 

TT+GT) 

1.03-3.47 

GT+TT 519 34 (6.55%) 

 

 

The Odds ratios were estimated using a logistic model adjusted for age, gender, hypertension, 

smoking, diabetes mellitus, statin therapy at time of stenting and family history of CAD 
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Table 3. Cox proportional regression analysis in the GEISHA cohort 

 

 

SNP 

 

p-value 

 

Hazard 

Ratio 

 

95% CI 

-957[C/T] 

(rs350099) 

0.053 

1.95 (TT vs 

CC+TC) 

0.99-3.83 

-475[C/T] 

(rs350104) 

0.048 

2.38 (CC vs 

TT+TC) 

1.01-5.61 

+102[G/T] 

(rs164390) 

0.038 

2.04 (GG vs 

TT+GT) 

1.04-4.01 

 

 

Hazard ratio estimated using a Cox proportional hazard model adjusted for age gender, hypertension, 

smoking, diabetes, statin therapy at time of stenting and family history of CAD  
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Figure Legends  

 

Fig.1. Analysis of SNPs in the CCNB1 gene. (A) Summary of SNPs that were included in the 

genotyping analysis. Position is defined as SNP location relative to transcription initiation site (+1). 

MAF: minor allele frequency. (B) -957T and -957C are the T or C polymorphic variants of rs350099, 

respectively. The -957T variant generates a consensus NF-Y binding site (CCAAT box).  -475C and -

475T are the C and T polymorphic variants of rs350104, respectively. The -475C variant generates a 

consensus AP-1 binding site (TGAG box). +102G and +102T are the G and T polymorphic variants of 

rs164390, respectively. The +102G variant generates a consensus SP1 binding site (GGGGCGGGGC 

box). 

 

Fig.2. Kaplan-Meier estimates of clinical ISR-free survival in the GEISHA cohort. (A)  Kaplan-

Meier curves of TLR-free survival in patients carrying -957TT genotype vs the combined -957TC+-

957CC genotypes. Log-rank p=0.057. (B)  Kaplan-Meier curves of TLR-free survival in patients carrying 

-475CC genotype vs the combined -475TC+-475CC genotypes. Log-rank p=0.056. (C)  Kaplan-Meier 

curves of TLR-free survival in patients carrying +102GG genotype vs the combined -957GT+-957GG 

genotypes. Log-rank p=0.040. The number at risk at 0, 2, 4, 6, 8, 10 and 12 months after PCI are shown 
for each SNP. 
 

 

Fig.3 Human peripheral lymphocytes from donors carrying the high-risk H1 CCNB1 haplotype 

(T/C/G) express increased levels of CCNB1 mRNA. (A) Statistical analysis of restenosis risk in CCNB1 

haplotypes: H1 (high risk alleles of all three SNPs) vs all other haplotypes (analysis of Clinica 

Mediterranea cohort). (B)  Kaplan-Meier curves of TLR-free survival in patients carrying H1 (T/C/G) 

haplotype vs all other haplotypes (analysis of GEISHA cohort). The p-value is from log-rank test. The 

number at risk at 0, 2, 4, 6, 8, 10 and 12 months after PCI are shown. (C) Relative CCNB1 mRNA levels 

in peripheral blood lymphocytes isolated from 31 healthy human donors carrying either H1 haplotype (-

957T/-475C/+102G (T/C/G)) or the H2 haplotype (-957C/-475T/+102G (C/T/T)). Results were analyzed 

by unpaired, 2-sided Student’s t test. 

 

Fig.4. The -957T restenosis-risk allelic variant of -957[C/T] in CCNB1 generates a binding site 

for NF-Y. EMSAs using HeLa cell nuclear extracts and the indicated probes/competitors (see 

Supplementary Table-S8). Autoradiographs are representative of 3-5 experiments. (A) Competition 

assays using molar excesses of the indicated unlabeled oligonucleotides. The graph shows mean 

relative intensities of the retarded probe:NF-Y complex (n=3  assays). Black bar: control without 

competitor (=1). Results were analyzed by one-way ANOVA followed by Dunnet’s multiple 

comparison test. *: p<0.01 and **: p<0.001 versus control without competitor. (B) Supershift assay 

using the indicated antibodies. No Ab: control without antibody. 

 

Fig.5. The -475C restenosis-risk allelic variant of -475[C/T] in CCNB1 generates a sequence with 

higher affinity than the -475T variant for binding AP-1. EMSAs using U2OS cell nuclear extracts 

and the indicated probes/competitors (see Supplementary Table-S8). Autoradiographs are 

representative of n=3-5 experiments. (A, B) Competition assays using molar excesses of the indicated 

unlabeled oligonucleotides. The graph shows mean relative band intensities of the retarded probe:AP-1 

complexes (n=5 assays). Black bar: control without competitor (=1). Results were analyzed by one-

way ANOVA followed by Bonferronni’s multiple comparison test. *: p<0.01 and **: p<0.001 versus 

control without competitor. (C) Supershift assays using the indicated antibodies. Only retarded bands 

are shown.  
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Fig.6. The +102G restenosis-risk allelic variant of +102[G/T] in CCNB1 generates a binding site 

for SP1. EMSAs using U2OS cell nuclear extracts and the indicated probes/competitors (see 

Supplementary Table-S8). Autoradiographs are representative of n=3-5 experiments. (A) Competition 

assays using molar excesses of the indicated unlabeled oligonucleotides. The autoradiograph shows the 

retarded probe:SP1 complexes and the graph shows mean relative band intensities of retarded 

probe:SP1 complexes (n=4-7 assays). Black bar: control without competitor (=1). Results were 

analyzed by one-way ANOVA followed by Dunnett´s multiple comparison test. *: p<0.001 versus 

control without competitor. (B) Binding reactions were incubated with the indicated competitors and 

antibodies.  

 

 

Fig.7. The -975T, -475C and +102G restenosis-risk allelic variants increase reporter gene 

expression via NF-Y, c-Fos and SP1. U2OS cells were co-transfected with pRL-Renilla (control for 

transfection efficiency) and the indicated reporter vectors (depicted above the graphs). Results are 

represented as the firefly luciferase/renilla luciferase ratio relative to control pGL3-luciferase (=1). 

Results were analyzed by one-way ANOVA followed by multiple comparison test. (A) Assays were 

performed without (white bars) or with (black bars) co-transfected expression vector encoding the NF-

YAdn dominant-negative mutant (n=12 replicates from 4 independent experiments). Results are 

expressed relative to control pGL3-luciferase (=1, dashed line). *: p<0.001 versus pGL3-luciferase and 

3x(-957C)-luciferase; #:  p<0.01 versus control 3x(-957T)- luciferase. (B) Assays were performed with 

co-transfected expression vector encoding c-Fos (n=10 replicates from 5 independent experiments). 

Results are expressed relative to pGL3-luciferase (=1). **: p<0.01 versus pGL3-luciferase; #: p<0.01 

versus 3x(-475T)- luciferase. (C) Assays were performed with co-transfected expression vector 

encoding SP1 (n=15 replicates from 5 independent experiments). Results are expressed relative to 

pGL3-luciferase (=1). *** : p<0.001 versus pGL3-luciferase; # : p<0.05 versus 3x(+102T)- luciferase.   

 

 

Fig.8. Model of increased risk of ISR through polymorphic transcriptional factor-dependent 

regulation of CCNB1 gene transcription. The -957T polymorphic variant of rs350099, the -475C 

variant of rs350104 and the +102G variant of rs164390 increase recruitment of the transcription factors 

NF-Y, AP-1 and SP1, respectively, to the human CCNB1 gene promoter. Increased recruitment of NF-

Y, AP-1 and SP1 in subjects bearing the H1 haplotype (-957T/-475C/+102G) may lead to higher 

CCNB1 mRNA expression and VSMC proliferation, thus contributing to a higher risk of ISR. In 

contrast, reduced recruitment of these transcription factors in subjects bearing the H2 haplotype (-

957C/-475T/+102T) is associated with lower CCNB1 expression and reduced ISR risk. 

 



T

Coding

region

(rs350099)
-957

5’ region (promoter + 5’-untranslated) human CCNB1 gene

NF-Y

(rs350104)
-475

AP-1

(rs164390)
+102

SP1

C

C

T

G

T

A

B

rs8192258 (-1055[-/A]) -1055               -/A 0.284

rs350099 (-957[T/C]) -957                T/C 0.320

rs352626 (-710[T/C]) -710                T/C 0.478

rs350104 (-475[T/C]) -475                T/C 0.285

rs164390 (+102[G/T]) +102                G/T 0.427

+1

Transcription

Initiation

Site

Position MAF

Allelic 

variantsSNP

Human

CCNB1

gene

FIGURE 1



C
u

m
u

la
ti

v
e
 T

L
R

-f
re

e
 s

u
rv

iv
a
l 
(%

)

100

96

92

88

84

2 4 6 8 10 12

Months after PCI

p=0.057

-957[C/T] (rs350099)

C
u

m
u

la
ti

v
e
 T

L
R

-f
re

e
 s

u
rv

iv
a
l 
(%

)

100

96

92

88

84

2 4 6 8 10 12

Months after PCI

p=0.056

-475[C/T] (rs350104)

C
u

m
u

la
ti

v
e
 T

L
R

-f
re

e
 s

u
rv

iv
a
l 
(%

)

100

96

92

88

84

2 4 6 8 10 12

Months after PCI

p=0.040

+102[G/T] (rs164390)A B C

FIGURE 2

CT+CC
TT

GT+TT
GG

CT+TT
CC

Number at risk

Months after PCI: 0      2      4      6      8     10    12

CT+CC: 457  439  422  408  386  362  171

TT: 142  130  123  118  111   106   51

0      2      4      6      8     10    12

CT+TT: 561  534 516  496  467  428  206

CC:    86    80   76    72    68    65    31

0      2      4      6      8     10    12

GT+TT: 495  476 458  443  420  394  185

GG:  155  141  134 128  120  114    55



A

CB

No 

restenosis

Odds

Ratio

0.039
All other

n = 138

1.43

(H1 vs 

all other)

1.00-1.82
54.3 %

n = 75

45.7 %

n = 60

45.6 %

n = 63

53.4 %

n = 71
H1 (T-C-G)

n = 131

51.2 %

48.8 %

Haplotype Frequency 95% ICRestenosis P value

FIGURE 3

C
u

m
u

la
ti

v
e
 T

L
R

-f
re

e
 s

u
rv

iv
a
l 
(%

)

100

96

92

88

84

2 4 6 8 10 12

p=0.057

All other haplotypes

Haplotype 1

Months after PCI

R
e
la

ti
v

e
  
C

C
N

B
1
  

m
R

N
A

  
le

v
e
l

Haplotype 1

(T-C-G) 

n = 14 

Haplotype 2

(C-T-T) 

n = 17

2

4

6

8 p = 0.0044

Number at risk

Months after PCI:   0      2      4      6      8     10    12

All other haplotypes: 457  434  419  402  378  348  168

Haplotype 1: 135  124  118  113  106  101   48  



NF-Y

(-25/-7)

A
Competitor

NF-Y

Mutant

Free

probe

2
0

x

2
0

x

2
0

x

6
0

x

6
0

x

6
0

x

-

957T

-

957C

N
o

 e
x

tr
a
c
t 

2
0

x

Retarded 

probe

1 2 3 4 5 6 7 8 9 10 

Fold 

exces

s

B NF-Y

(-26/-1) -957T -957C

N
o

 e
x

tr
a
c
t 

N
o

 e
x

tr
a
c
t 

N
o

 e
x

tr
a
c
t 

A
n

ti
-N

F
-Y

B

A
n

ti
-C

R
E

B
II

Retarded probe

Supershift

Free 

probe

A
n

ti
-N

F
-Y

B

A
n

ti
-C

R
E

B
II

A
n

ti
-N

F
-Y

B

A
n

ti
-C

R
E

B
II

1 2 3 4 5 6 7 8 9 10 11 12 

Probe

20x 60x 20x 60x 20x 60x

-957T -957C

Competitor

R
e
la

ti
v
e
 b

a
n

d
 i
n

te
n

s
it

y

0.5 *
**

*

Probe: NF-Y (-25/-7)

NF-Y(-25/-7)

6
0

x

1

N
o

 A
b

N
o

 A
b

N
o

 A
b

FIGURE 4



Competitor

(50-fold excess)

- 475T

-
4

7
5

T

-
4

7
5

C

A
P

-1

-
4

7
5

T

-
4

7
5

C

A
P

-1

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

- 475C

13 14 15 16 17 18 19 20 21 22

AP-1 consensus

-
4

7
5

T

-
4

7
5

C

A
P

-1

N
F

-Y

N
F

-Y

Free 

probe

Retarded probe

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

- 475T- 475C

N
F

-Y

1 2 3 4 5 6 7 8 9 10 1

1

12

Probe

-- - - -

Fold 

excess

Free 

probe

Competitor

N
o

 
e

x
tr

a
c

t

- 475T- 475C

1
0

0

2
0

0

2
5

5
0

2
5

1
0

0

2
0

0

2
5

5
0

1 2 3 4 5 6 7 8 9 10 11

R
e
la

ti
v
e

re
a

tr
d

e
d

p
ro

b
e

in
te

n
s

it
y

*

**

**

**

-

A
n

ti
-c

-F
o

s

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

A
n

ti
-c

-F
o

s

A
n

ti
-c

-F
o

s

AP-1 cons - 475T- 475C

Supershift

Probe

C

1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 18

- --

Antibody

AP-1 consensus probe

A

B

Fold 

excess

Competitor

N
o

 
e

x
tr

a
c

t

- 475T- 475C

1
0

0

2
0

0

2
5

5
0

2
5

1
0

0

2
0

0

2
5

5
0

-

A
n

ti
-c

-J
u

n

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

N
o

 
e

x
tr

a
c

t

A
n

ti
-c

-J
u

n

A
n

ti
-c

-J
u

n

AP-1 cons - 475T- 475C

Supershift

Probe

- --

Antibody

Non-specific

0.5

1

Retarded

probe

Retarded

probe

Retarded

probe

FIGURE 5



Supershift

Retarded

probe

N
o

 e
x
tr

a
c

t

+ 102T+ 102G

N
o

 e
x
tr

a
c

t

N
o

 e
x
tr

a
c

t

SP1 consensus

S
P

1
 (

1
0

0
X

)

A
n

ti
-S

P
1

A
n

ti
-M

E
F

2
C

S
P

1
 (

1
0
0
x
)

A
n

ti
-S

P
1

A
n

ti
-M

E
F

2
C

S
P

1
(1

0
0

X
)

A
n

ti
-S

P
1

A
n

ti
-M

E
F

2
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Free 

probe

B Probe

15

_ _ _
Competitor

or antibody

Non-

specific

A
SP1 consensus probe

+ 102T

1
0
0

3
0
0

2
0
0

6
0
0

+ 102G

1
0
0

3
0
0

2
0
0

6
0
0

*
*

*

*

*

R
e
la

ti
v
e

re
ta

rd
e
d

p
ro

b
e

in
te

n
s

it
y

Fold

excess

Fold

excess

Competitor

N
o

 e
x
tr

a
c

t

N
o

 e
x
tr

a
c

t

2
5

2
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

_ _

Competitor

+ 102T

1
0
0

3
0
0

2
0
0

6
0
0

+ 102G

1
0
0

3
0
0

2
0
0

6
0
0

Competitor

N
o

 e
x
tr

a
c
t

N
o

 e
x
tr

a
c
t

2
5

2
5_ _

Competitor

0.5

1

*

FIGURE 6



R
e
la

ti
v
e

lu
c
if

e
ra

s
e

a
c
ti

v
it

y

3x(-957T) 3x(-957C)

1.0

2.0

*

#

T T

3x(-957T)

T Luciferas

e

C C C

3x(-957C)

Luciferas

e

BA

3x(-475C)

3x(-475T) 3x(+102T)

3x(+102G)

T TT Luciferas

e

C C C Luciferas

e

T TT Luciferas

e

G G G Luciferas

e

C

NF-YAdncontrol

R
e
la

ti
v
e

lu
c
if

e
ra

s
e

a
c
ti

v
it

y

3x(+102T)3x(+102G)pGL3

SP1

0.5

1.5

R
e
la

ti
v
e
 l
u

c
if

e
ra

s
e
 a

c
ti

v
it

y

#

1.0

0.5

1.5

pGL3

c-Fos

3x(-475C) 3x(-475T)

0.5

1.0

** # ***

FIGURE 7



DNA

Translation

Transcription

mRNA

PROTEIN

CODING REGION AG A A A
CODING REGION AG A A A
CODING REGION AG A A A

CODING REGION AG A A A

NF-Y

T C G C T T

AP-1
AP-1

CELLULAR PROLIFERATION

RISK OF RESTENOSIS

CELLULAR PROLIFERATION

RISK OF RESTENOSIS

Translation

Human CCNB1 gene

5’ regulatory region

(promoter + 5’-untranslated)

cyclin B1 cyclin B1 cyclin B1 cyclin B1

SP1

Haplotype 1 Haplotype 2

-957 -475 +102+1 -957 -475 +102+1

rs

350104

rs

164390

Transcription

rs

350099

rs

350104

rs

164390

rs

350099

FIGURE 8


	Silvestre et al_Circ Cardiovasc Gen_accepted
	FIG 1-8

