The Spanish Influenza in Madrid

Laura Cilek ¹ Gerardo Chowell ² Diego Ramiro Fariñas ¹

¹Center for Humanities and Social Sciences (CSIC-CCHS)

²Georgia State University, Fogarty International Center & National Institutes of Health

13 deciembre 2018, Centro Nacional de Epidemiología, Madrid

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Background

1918 Spanish Influenza in Madrid, Spain, and around the World

Analysis

Data Baseline Excess Mortality Strength and Timing

Final Remarks

1918 Spanish Influenza

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

World-Wide

• Estimated 50-100 million deaths

- Estimated 50-100 million deaths
- Can be characterized by to three waves:

- Estimated 50-100 million deaths
- Can be characterized by to three waves:
 - **Spring:** Short, strong (high reproduction number) with relatively low mortality, between April-June 1918, did not occur universally
 - New York City, Copenhagen, Madrid

- Estimated 50-100 million deaths
- Can be characterized by to three waves:
 - **Spring:** Short, strong (high reproduction number) with relatively low mortality, between April-June 1918, did not occur universally
 - New York City, Copenhagen, Madrid
 - Fall: Long, sustained wave during which majority of deaths occur

- Estimated 50-100 million deaths
- Can be characterized by to three waves:
 - **Spring:** Short, strong (high reproduction number) with relatively low mortality, between April-June 1918, did not occur universally
 - New York City, Copenhagen, Madrid
 - Fall: Long, sustained wave during which majority of deaths occur
 - Winter: Least strong, generally in January-March of 1919, did not occur universally

- Estimated 50-100 million deaths
- Can be characterized by to three waves:
 - **Spring:** Short, strong (high reproduction number) with relatively low mortality, between April-June 1918, did not occur universally
 - New York City, Copenhagen, Madrid
 - Fall: Long, sustained wave during which majority of deaths occur
 - Winter: Least strong, generally in January-March of 1919, did not occur universally
- Many died from secondary respiratory infections (pneumonia or bronchitis)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Mortality in seasonal influenza mimics a "u" or "v" shaped curve, wherein the highest mortality rates and risk occur in children and seniors

- Mortality in seasonal influenza mimics a "u" or "v" shaped curve, wherein the highest mortality rates and risk occur in children and seniors
- During the Spanish flu, many populations experienced a "w" shaped curve, in which mortality peaks are also visible among young adults

- Mortality in seasonal influenza mimics a "u" or "v" shaped curve, wherein the highest mortality rates and risk occur in children and seniors
- During the Spanish flu, many populations experienced a "w" shaped curve, in which mortality peaks are also visible among young adults
- The extent to which these mortality patterns are present could vary according to prior exposure and acquired immunity to different strains of influenza viruses

- Mortality in seasonal influenza mimics a "u" or "v" shaped curve, wherein the highest mortality rates and risk occur in children and seniors
- During the Spanish flu, many populations experienced a "w" shaped curve, in which mortality peaks are also visible among young adults
- The extent to which these mortality patterns are present could vary according to prior exposure and acquired immunity to different strains of influenza viruses
 - Russian flu pandemic at the end of the 19th century (H3)
 - Strains of the H1 virus likely began circulating in some parts of the world around the turn of the century.
 - Some evidence suggests the presence of a first wave tempered the strong effects of subsequent waves.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• The herald wave struck Madrid in late May of 1918, but was not found in most other provinces of the country.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The herald wave struck Madrid in late May of 1918, but was not found in most other provinces of the country.
- The mortality impact of the herald wave was small compared to the following waves.

- The herald wave struck Madrid in late May of 1918, but was not found in most other provinces of the country.
- The mortality impact of the herald wave was small compared to the following waves.
- Most places experienced a strong fall wave in October of 1918.

Spanish Influenza in Spain

Daily Influenza Death Rate by Province

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• First reported in May of 1918 when many became sick from the "Naples Soldier"

- First reported in May of 1918 when many became sick from the "Naples Soldier"
- Strong Spring Wave, small winter wave, additional epidemic (could be considered a 4th wave) in December-January of 1919-1920

- First reported in May of 1918 when many became sick from the "Naples Soldier"
- Strong Spring Wave, small winter wave, additional epidemic (could be considered a 4th wave) in December-January of 1919-1920
- Possibly brought by Spanish and Portuguese Migrant Workers from Southern France

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Create a viable mortality baseline using only one year of mortality data.

- Create a viable mortality baseline using only one year of mortality data.
- Provide detailed estimates of overall and flu-related mortality for each wave of Spanish flu.

- Create a viable mortality baseline using only one year of mortality data.
- Provide detailed estimates of overall and flu-related mortality for each wave of Spanish flu.
- Contribute information on the excess mortality by wave and according to age structure in an large urban population

• Madrid Civil Register Records on Deaths (1917-1922)

- Sex, Age, Civil Status, Cause of Death, Foreign Born, Death and Inscription Dates, District of Death, Address, Occupation
- We distinguish influenza and respiratory related deaths by extracting records with pneumonia, bronchopneumonia, and bronchitis listed as a cause of death, then disregarded those records in the subset which also contained tuberculosis.

Table: Madrid Civil Register Death Records, 1917-1922

Year	1917	1918	1919	1920	1921	1922	total
Deaths	15415	18956	18279	17951	16171	16254	103026
Median Age	37	33	36	30	35	35	34

- Madrid Civil Register Records on Deaths (1917-1922)
 - Sex, Age, Civil Status, Cause of Death, Foreign Born, Death and Inscription Dates, District of Death, Address, Occupation
 - We distinguish influenza and respiratory related deaths by extracting records with pneumonia, bronchopneumonia, and bronchitis listed as a cause of death, then disregarded those records in the subset which also contained tuberculosis.

Table: Madrid Civil Register Death Records, 1917-1922

Year	1917	1918	1919	1920	1921	1922	total
Deaths	15415	18956	18279	17951	16171	16254	103026
Median Age	37	33	36	30	35	35	34

• Yearly Statistical Books for the city of Madrid (1917-1922)

Population by Age-group in the city

Yearly Mortality Rates, 1917-1922

Left: all cause weekly mortality rates using yearly population data and deaths from the civil register.

Initial Serfling Application and Issues

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Simple Serfling Regression Model using 1917 mortality records

 $\frac{\textit{Deaths}_{x_t}}{\textit{Population}_{x_t}} = \textit{u} + \alpha * (t) + \beta * \textit{sin}(\frac{2\pi}{52.17} * t) + \beta * \textit{cos}(\frac{2\pi}{52.17} * t)$

Initial Serfling Application and Issues

Simple Serfling Regression Model using 1917 mortality records

$$\frac{\textit{Deaths}_{x_t}}{\textit{Population}_{x_t}} = u + \alpha * (t) + \beta * \textit{sin}(\frac{2\pi}{52.17} * t) + \beta * \textit{cos}(\frac{2\pi}{52.17} * t)$$

Raw Mortality Data from Death Records, 1917-1922

▲ロト ▲課 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ultimately, we first added new parameters to account for the summer peak:

$$\begin{array}{ll} \frac{Deaths_{x_t}}{Population_{x_t}} = & u + \alpha * (t) + \alpha * (\frac{100}{t})^2 + \\ & \beta * sin(\frac{2\pi}{52.17} * t) + \beta * sin(\frac{4\pi}{52.17} * t) + \\ & \beta * sin(\frac{8\pi}{52.17} * t) + \gamma * cos(\frac{2\pi}{52.17} * t) + \\ & \gamma * cos(\frac{4\pi}{52.17} * t) + \gamma * cos(\frac{8\pi}{52.17} * t) \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ultimately, we first added new parameters to account for the summer peak:

$$\begin{array}{ll} \frac{Deaths_{x_t}}{Population_{x_t}} = & u + \alpha * (t) + \alpha * (\frac{100}{t})^2 + \\ & \beta * sin(\frac{2\pi}{52.17} * t) + \beta * sin(\frac{4\pi}{52.17} * t) + \\ & \beta * sin(\frac{8\pi}{52.17} * t) + \gamma * cos(\frac{2\pi}{52.17} * t) + \\ & \gamma * cos(\frac{4\pi}{52.17} * t) + \gamma * cos(\frac{8\pi}{52.17} * t) \end{array}$$

But.....

Ultimately, we first added new parameters to account for the summer peak:

$$\begin{array}{ll} \frac{Deaths_{x_t}}{Population_{x_t}} = & u + \alpha * (t) + \alpha * (\frac{100}{t})^2 + \\ & \beta * sin(\frac{2\pi}{52.17} * t) + \beta * sin(\frac{4\pi}{52.17} * t) + \\ & \beta * sin(\frac{8\pi}{52.17} * t) + \gamma * cos(\frac{2\pi}{52.17} * t) + \\ & \gamma * cos(\frac{4\pi}{52.17} * t) + \gamma * cos(\frac{8\pi}{52.17} * t) \end{array}$$

But..... because we only have one year of pre-epidemic mortality data (1917), we wanted to account for year-to-year fluctuation in deaths by week

Parametric Bootstrapping of Baseline Estimation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Concatenate six iterations of weekly 1917 death counts to account for the entire period of study (1917-1922).

- Concatenate six iterations of weekly 1917 death counts to account for the entire period of study (1917-1922).
- Assume the number of deaths each week follows a Poisson distribution with a mean and variance equal to the number of observed deaths.

- Concatenate six iterations of weekly 1917 death counts to account for the entire period of study (1917-1922).
- Assume the number of deaths each week follows a Poisson distribution with a mean and variance equal to the number of observed deaths.
- Simulate 500 vectors of six-year mortality data from the original 1917 weekly death counts.

- Concatenate six iterations of weekly 1917 death counts to account for the entire period of study (1917-1922).
- Assume the number of deaths each week follows a Poisson distribution with a mean and variance equal to the number of observed deaths.
- Simulate 500 vectors of six-year mortality data from the original 1917 weekly death counts.
- Run our modified Serfling Regression Models for each six-year set of simulated mortality data.

- Concatenate six iterations of weekly 1917 death counts to account for the entire period of study (1917-1922).
- Assume the number of deaths each week follows a Poisson distribution with a mean and variance equal to the number of observed deaths.
- Simulate 500 vectors of six-year mortality data from the original 1917 weekly death counts.
- Run our modified Serfling Regression Models for each six-year set of simulated mortality data.
- Construct our final mortality baselines from the mean and upper 95% values of the 500 sets of coefficients generated above.

Estimating Baseline Mortality

actual weekly mortality rates from 1917-1922, and lines show mean and upper 95% from simulated 1917 deaths data. Vertical lines indicate breakpoints from which excess mortality is generated.

Excess All-Cause Mortality

Table: Age-Specific Excess Mortality By Wave

Age Group	Total Excess Deaths	Weekly Excess Mortality	Standardized	
		Rate (Per 10,000)	Mortality Risk	
lerald Wave, 1918	3			
Overall	1456	19.42	1.57	
[00, 04)	375	57.57	1.40	
05, 14)	95	6.58	2.03	
15, 24)	165	10.59	2.28	
25, 49)	486	18.13	1.95	
50, 69)	213	21.32	1.55	
70, Inf)	127	80.39	1.68	
Fall and Winter, 1	918-1919			
Overall	2511	33.50	1.27	
00, 04)	293	44.90	1.22	
05, 14)	364	25.11	1.40	
15, 24)	401	25.73	1.40	
25, 49)	1250	0.1019	1.43	
50, 69)	262	26.22	1.24	
70, Inf)	275	173.58	1.24	
	1000			
cho Wave 1919	-1920	00.00	1 50	
Jverall	2538	33.86	1.52	
00,04)	823	126.34	1.59	
J5, 14)	261	17.98	2.18	
15, 24)	235	15.08	2.14	
25, 49)	467	17.41	1.63	
50, 69)	344	34.45	1.41	
70, Int)	485	306.51	1.63	▶ ★ E ▶ ★ E ▶

Excess P&I Mortality

Age Group	Total Excess Deaths	Weekly Excess Mortality	Standardized
		Rate (Per 10,000)	Mortality Risk
Herald Wave, 1918			
Overall	613	8.17	2.59
[00, 04)	253	38.81	2.62
[05, 14)	19	1.31	3.11
[15, 24)	49	3.13	4.43
[25, 49)	114	4.25	2.89
[50, 69)	100	9.98	2.27
[70, Inf)	77	48.72	3.15
Fall and Winter, 1918-1	919		
Overall	1670	22.28	1.82
[00, 04)	308	47.25	1.69
[05, 14]	82	5.65	2.27
[15, 24]	185	11.87	4.20
[25, 49]	524	19.56	2.77
[50, 69)	346	34.66	1.65
[70, Inf)	250	157.79	1.88
Echo Wave 1919 -1920)		
Overall	1061	14.15	1.86
[00, 04)	397	61.04	2.04
[05, 14]	58	3.97	2.35
[15, 24]	83	5.33	3.56
[25, 49]	180	6.71	2.18
50, 69)	168	16.85	1.67
[70 lnf)	193	121.84	1.89

Table: Age-Specific Excess Respiratory Mortality By Wave

Excess Mortality by Age

ヘロン 人間と 人間と 人間と

э

Age-specific mortality patterns reveal majority of absolute excess mortality in young and old ages, and high relative rates among young and middle aged adults

Excess Mortality by Age

Age-specific mortality patterns reveal majority of absolute excess mortality in young and old ages, and high relative rates among young and middle aged adults

Contextualizing Results

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Herald wave: Highest relative excess

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Herald wave: Highest relative excess (lower baseline mortality)

- Herald wave: Highest relative excess (lower baseline mortality)
- Fall Wave: Highest absolute excess
- Age-specific mortality curve:
 - Fall wave most closely resembles the "w"-shaped pattern

- Herald wave: Highest relative excess (lower baseline mortality)
- Fall Wave: Highest absolute excess
- Age-specific mortality curve:
 - Fall wave *most* closely resembles the "w"-shaped pattern
 - Spring and fourth waves more closely resemble mortality curve of seasonal epidemics, however the standardized mortality risk is much higher for young adult and adult age groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

• Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit:

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit: Log(Deaths_t) = α + β_x * t

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit: Log(Deaths_t) = α + β_x * t
- The ascending slope of the wave can be considered the growth rate *r*, which can then be used to calculate the Reproduction Number *R*:

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit: Log(Deaths_t) = α + β_x * t
- The ascending slope of the wave can be considered the growth rate *r*, which can then be used to calculate the Reproduction Number R: $R = e^{rt}$

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit: Log(Deaths_t) = α + β_x * t
- The ascending slope of the wave can be considered the growth rate r, which can then be used to calculate the Reproduction Number R: $R = e^{rt}$, where t equals the length of the ascending segment.

- Mathematically estimates the starting, peak, and ending dates of the wave, which allows a more precise measurement of wave timing
- More specifically, estimates breakpoints for a previously fitted linear regression model to maximize fit: Log(Deaths_t) = α + β_x * t
- The ascending slope of the wave can be considered the growth rate r, which can then be used to calculate the Reproduction Number R: $R = e^{rt}$, where t equals the length of the ascending segment.
- We examine four distinct wave periods:

Fitted Segmented Regression, Madrid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Table: Strength and Timing of each wave, Madrid

Wave	Start Date	Peak Date	End Date	Length (days)	R_0
Herald 1918	26 May	06 June	21 June	25	3.04
Fall 1918	09 Sept	29 Oct	23 Nov	75	4.04
Winter 1919	11 Feb	18 Mar	19 Apr	66	1.71
Winter 1919-20	15 Dec	05 Jan	26 Jan	42	1.61

• We have been working on the role of neighborhood environment (social, economic, and structural) in excess mortality; we will continue to explore how the city-wide excess mortality presented today varies from neighborhood to neighborhood.

- We have been working on the role of neighborhood environment (social, economic, and structural) in excess mortality; we will continue to explore how the city-wide excess mortality presented today varies from neighborhood to neighborhood.
- Expand the context of our study to include other provinces in Spain to examine differences in the strength and timing in each wave

Thank you for your attention.

We welcome all comments and feedback (en español tambien)!

