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Abstract The functions performed by the concentric shells of multilayered dsRNA viruses

require specific protein interactions that can be directly explored through their mechanical

properties. We studied the stiffness, breaking force, critical strain and mechanical fatigue of

individual Triple, Double and Single layered rotavirus (RV) particles. Our results, in combination with

Finite Element simulations, demonstrate that the mechanics of the external layer provides the

resistance needed to counteract the stringent conditions of extracellular media. Our experiments,

in combination with electrostatic analyses, reveal a strong interaction between the two outer layers

and how it is suppressed by the removal of calcium ions, a key step for transcription initiation. The

intermediate layer presents weak hydrophobic interactions with the inner layer that allow the

assembly and favor the conformational dynamics needed for transcription. Our work shows how

the biophysical properties of the three shells are finely tuned to produce an infective RV virion.

DOI: https://doi.org/10.7554/eLife.37295.001

Introduction
The advent of single-molecule techniques have opened the door to understand how the mechanics

of biomolecular assemblies is essential for their function (Howard, 2001; Müller et al., 2002). In the

case of viruses, the infectious particle must be robust enough to protect the viral genome outside

the cell but also competent to undergo the required structural changes once the host cell is recog-

nized, overcome its barriers and carry out the events necessary for a productive viral replication cycle

(Flint et al., 2004).

Double-stranded RNA (dsRNA) viruses have a number of common challenges derived from the

very nature of their genome. Specifically, since there are no host cell enzymes that can recognize

dsRNA as template for transcription, the viral particle must incorporate a transcription machinery

able to synthesize the required mRNAs to initiate the viral replication cycle. In addition, dsRNA is an

inducer of the innate cell-based antiviral response, including interferon synthesis and apoptosis

(Mertens, 2004; Arnold et al., 2013). The virus must evade the host sentinels that trigger these

mechanisms and control the host response (Akira et al., 2006; Frias et al., 2012). Most dsRNA

viruses exhibit a common solution to these problems, which consists of the assembly of a stable pro-

tein cage in the host cytoplasm that isolates the viral dsRNA molecules to prevent the cellular
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antiviral response. This cage (the viral core) incorporates the necessary enzymes for transcription and

replication of the dsRNA genome, which are accomplished without disassembly the particle. This

core presents a common architecture that consists of an icosahedral T = 1 shell formed by 60 asym-

metric dimers (a 120-subunit capsid) (Jaing et al., 2008) present in most of the dsRNA virus families

(King et al., 2011). Most of these viruses present a single protein shell and lack an extracellular cycle

(Ghabrial et al., 2015). However, Cystoviridae and Reoviridae families display concentric protein

layers surrounding the core that are responsible of host cell recognition, entry, etc. This modularity

facilitates the study of the relationship between the layer functions, their structure and physical

properties.

RV, a major causative agent of severe dehydrating diarrhea in children under five years

(GBD Diarrhoeal Diseases Collaborators, 2017), is a multilayered virus of clinical relevance and one

of the main study models for the Reoviridae family. The RV infectious particle is a 100 nm non-envel-

oped triple-layered particle (TLP) composed of three concentric protein shells enclosing the dsRNA

genome and the viral RNA polymerase and capping enzyme (Figure 1A) (Settembre et al., 2011).

The inner layer is a T = 1 capsid formed by 60 asymmetric dimers of the VP2 protein (102 kDa) that

surrounds the eleven dsRNA genomic segments associated with the RNA-dependent RNA-polymer-

ase VP1 (125 kDa) and the RNA-capping enzyme VP3 (88 kDa) at the pentameric positions

(Estrozi et al., 2013; Periz et al., 2013). This thin single-layered particle (SLP), an intermediate

structure that is involved in the packing and replication of the viral genome, is surrounded by a thick

T = 13 layer formed by 260 VP6 pear-shaped trimers (45 kDa) (Settembre et al., 2011;

McClain et al., 2010) in the double-layered particle (DLP). This particle, which does not disassemble

during the infection, constitutes the transcriptional machinery that initiates the core steps of the viral

replication cycle once delivered in the host cell cytoplasm (Cohen et al., 1979; Bass et al., 1992;

Lawton et al., 1997). The DLP is not infectious since it cannot recognize, bind to and penetrate the

host target cell. These abilities are incorporated in the outer layer of the TLP formed by VP4 and

VP7. The VP7 glycoprotein is organized as 260 Ca2+-stabilized trimers that cap and embrace through

eLife digest Viruses are small agents that enter and hijack cells to create more of themselves.

Most of them are made of a protein shell that encases the viral genome and certain molecular tools.

During the life cycle of a virus, this shell fulfils many roles, from protecting the genetic information to

recognising the appropriate host cell. It must also disassemble at the right time for replication to

take place.

A number of viruses wrap themselves in several layers of protective casing, resulting in an onion-

like structure. For example, the rotaviruses that sometimes cause severe diarrhoea in young children

have three layers, each with specific properties. Rotavirus subparticles may exist with only one or

two of these coats, which allows researchers to study each layer in detail.

Here, Jiménez-Zaragoza et al. use a method called atomic force microscopy to look into the

physical properties of the layers of the rotavirus. The technique uses an extremely sharp stylus

attached to a tiny cantilever to deform the shells of a single virus. How the structure reacts can then

be recorded using a powerful microscope. This helps to determine the stiffness of the layers, and

how much force is required to break or weaken each of them.

The experiments reveal that the mechanical properties of the layers are tailored to help the virus

survive and infect cells. The outer coat is stiff and resistant to strain, which shields the virus during its

travel through the digestive system. The middle layer is the thickest and the softest of the three. It

allows the virus to cope with deformation, which is necessary for the expression of its genome.

The outer and middle layers are strongly connected, in part through calcium ions that may be

‘sandwiched’ between the two. By contrast, the middle and inner layers are only loosely attached to

each other. When the virus enters the cell, the calcium ions get dislodged, helping the external

coating to easily disassemble. In turn, this creates structural changes in the middle layer, which

activate molecules required for the genome to get expressed. Ultimately, disrupting the finely tuned

properties of the layers could create new ways of fighting rotaviruses.

DOI: https://doi.org/10.7554/eLife.37295.002
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its N-terminal arm each VP6 trimer of the DLP (Settembre et al., 2011; Chen et al., 2009). Sixty

spikes are anchored on the VP6 layer depressions that surround the pentameric positions and are

clamped by the VP7 layer. The viral spike is formed by three copies of VP4 that must be proteolyti-

cally processed to VP5* and VP8* by trypsin-like proteases from the intestinal lumen or from within

cells to generate a fully-infectious virion (Settembre et al., 2011; Estes et al., 1979; Estes et al.,

1981; Clark et al., 1981). Interestingly, the assembly of the VP6 T = 13 layer on the 60 VP2 dimers

(T = 1) that build the SLP is one of the best examples of symmetry mismatch, of which the conse-

quences for virus particle stability are still not well understood. This mismatch is preserved in most

reoviruses, and has been associated with the regulation of the polymerase activity (McClain et al.,

2010). In contrast with the plethora of information obtained during 30 years of structural studies on

the particle components (Trask et al., 2012), little is known about the mechanical properties of the

RV particle layers, subviral particles and TLP, and their mutual influence in contributing to the virus

stability along its cycle. Both the application (Rief et al., 1997; Perrino and Garcia, 2016) and mea-

surement (Hua et al., 2002; Alsteens et al., 2017) of forces on single molecules are key methodolo-

gies to decipher the function of biomolecular systems. Specifically, the study of viral capsids by

Atomic Force Microscopy (AFM) enables the exploration of physicochemical properties, such as

mechanics and electrostatics, in liquid milieu by using a sharp tip attached to a cantilever to probe

individual particles (Roos et al., 2010). Single indentation assay consists on deforming a virus parti-

cle with the AFM tip while recording the cantilever bending vs. the virus deformation to induce the

virus breakage (Roos, 2018). The force-indentation curves (FIC) so obtained inform about the virus

stiffness or spring constant (elasticity), breaking force and brittleness. AFM also allows applying

repetitive loading cycles to individual viruses at low force (~100 pN) which results in mechanical

fatigue experiments (Moreno-Madrid et al., 2017). AFM directly probed the existence of pressure

(Kindt et al., 2001; Smith et al., 2001) in some phages (Evilevitch et al., 2011; Hernando-

Pérez et al., 2012) that is used to translocate their genome into the host (González-Huici et al.,

2004). In a similar way, it has been found that human adenovirus pressurizes during maturation, and

that this pressure is related to the degree of condensation of the dsDNA of the viral

Figure 1. Production and purification of TLP and subviral particles. (A) Schematic representation of the mature RV

TLP. Color code is detailed. (B) DLP and SLP generation from TLP. VP7 and VP5*/VP8* are disassembled from TLP

in the presence of EDTA. High concentration of Ca2+ ions takes apart VP6 trimers to liberate SLP. (C–E)

Coomassie blue-stained SDS-PAGE gels and negative staining electron microscopy of TLP (C), DLP (D) and SLP

(E). Positions of rotavirus structural proteins (VP) are indicated. The question mark indicates the unknown position

and structure of VP3. The bar represents 100 nm.

DOI: https://doi.org/10.7554/eLife.37295.003

The following figure supplement is available for figure 1:

Figure supplement 1. Cryo-EM analysis of TLP.

DOI: https://doi.org/10.7554/eLife.37295.004
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minichromosome (Ortega-Esteban et al., 2015a; Ortega-Esteban et al., 2015b). In addition, the

influence of both homologous (Mertens et al., 2015; Zeng et al., 2017a) and heterologous

(Llauró et al., 2016a; Snijder et al., 2016) cargos have been explored in virus mechanics. The alter-

ation of the capsid structure with maturation (Roos et al., 2012; Hernando-Pérez et al., 2014a),

mutations (Castellanos et al., 2012; van Rosmalen et al., 2018) or cementing proteins (Hernando-

Pérez et al., 2014b; Llauró et al., 2016b) also influences virus mechanics. However, these studies

have been never applied to multilayered virus particles, which enable direct measurements of the

inter-layer interactions magnitude. Here, we explore the mechanical properties of individual TLP,

DLP and SLP particles by single indentation assay and probe their stability against mechanical

fatigue. Our experiments, in combination with Finite Element (FE) analysis, the atomic structure of

the layers and the calculation of the electrostatic properties of each particle, allow to probe and

interpret the intra and interlayer interactions and relate them to their role during the virus replication

cycle.

Figure 2. AFM topographies of TLP and subviral particles. (A–C) AFM images of TLP (A), DLP (B) and SLP (C). (D)

Height profile of the TLP, DLP and SLP taken along the central part (indicated with arrows) of the particles shown

in panels A-C. Dashed line indicates the height of the particle obtained at the VP7 layer. (E) Box plot of heights

measured from single TLP [69.7 ± 6.1 nm (red, N = 129)], DLP [65.7 ± 2.8 nm (blue, N = 82)] and SLP [53.8 ± 0.9 nm

(green, N = 71)]. The two different populations of TLP are indicated with filled and empty red squares (see main

text). Height data are available from Figure 2—source data 1 and 2.

DOI: https://doi.org/10.7554/eLife.37295.005

The following source data and figure supplements are available for figure 2:

Source data 1. Topo profiles of Figure 2D.

DOI: https://doi.org/10.7554/eLife.37295.008

Source data 2. Height data points statistics of Figure 2E.

DOI: https://doi.org/10.7554/eLife.37295.009

Figure supplement 1. AFM topography of TLP.

DOI: https://doi.org/10.7554/eLife.37295.006

Figure supplement 2. Deformation of RV subviral particles after adsorption on HOPG.

DOI: https://doi.org/10.7554/eLife.37295.007

Jiménez-Zaragoza et al. eLife 2018;7:e37295. DOI: https://doi.org/10.7554/eLife.37295 4 of 23

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.37295.005
https://doi.org/10.7554/eLife.37295.008
https://doi.org/10.7554/eLife.37295.009
https://doi.org/10.7554/eLife.37295.006
https://doi.org/10.7554/eLife.37295.007
https://doi.org/10.7554/eLife.37295


Results

Purification and characterization of TLP, DLP and SLP
Previous studies have shown that RV TLP can be converted to DLP by disassembling the outer VP4-

VP7 layer with chelating agents such as ethylenediaminetetraacetic acid (EDTA) (Estes et al., 1979).

Once purified, DLP can be converted to SLP by chaotropic agents such as CaCl2 (Figure 1B)

(Bican et al., 1982). TLP were purified from infected cells, and DLP and SLP were produced and

purified combining the above described treatments with several ultracentrifugation steps to remove

the proteins of the disassembled layers. Homogeneous populations of TLP, DLP and SLP were

obtained, as indicated by SDS-PAGE and negative staining electron microscopy analysis (Figure 1C–

E). Spike polypeptides (VP5*/VP8*) and VP7 glycoprotein are totally removed in purified DLP

(Figure 1D) while VP6 is absent in the isolated cores (Figure 1E).

AFM topography of TLP and RV subviral particles
After the adsorption of particles on substrate, we used AFM in jumping mode (Ortega-

Esteban et al., 2012) for the topographical characterization of individual particles in liquid. Our high

resolution images (Figure 2) are compatible with the structures obtained from cryo-EM

(Settembre et al., 2011; Zhang et al., 2008) and x-ray (McClain et al., 2010), where thousands and

millions of particles are averaged, respectively. Spikes protruding from the TLP (Figure 2A) as well

as the DLP pentameric and hexameric depressions (Figure 2B) are resolved. In contrast, SLP offers

featureless structure (Figure 2C). Although the distinctive topography of TLP allows their unambigu-

ous identification, they exhibit a broad distribution of height values (Figure 2D–E). This behavior is

probably due to the number of spikes (Figure 2—figure supplement 1) present at the interface

between the particles and the substrate surface and to the mode of how they influence the particle

adsorption. The height data of TLP (Figure 2E, red) suggest two populations centered at ~74

and ~62 nm, represented by filled and empty symbols, respectively. We propose that these data cor-

respond to the presence (red filled squares, Figure 2E) or absence (red empty squares, Figure 2E)

of spikes at the particle-surface interface. In the first case the presence of spikes would prevent par-

tially the contact between the VP7 layer and the substrate (Figure 2—figure supplement 2), thus

precluding virus adsorption and deformation. However, when the VP7 layer directly rests on the sur-

face, TLP collapse to an average height value of 62 nm (Figure 2) probably due to a strong VP7-sur-

face interaction (Zeng et al., 2017a). In contrast, DLP and SLP present a narrower height

distribution (Figure 2E) whose average values are compatible with the nominal values (70 nm for

DLP and 55 nm for SLP), indicating a little deformation due to the adsorption on the surface of 6%

and 2% for DLP and SLP respectively (Llauró et al., 2015; Zeng et al., 2017b).

Although icosahedral symmetry imposition renders an ideal RV particle with 60 trimeric spikes

(Figure 1A and Figure 1—figure supplement 1), previous studies have shown that some positions

are unoccupied in the purified TLP (Chen and Ramig, 1992; Trask and Dormitzer, 2006;

Rodrı́guez et al., 2014). To estimate the amount of spike protein in TLP, VP5* was quantified rela-

tive to protein VP6 (occupancy). Densitometric analysis of Coomassie-stained gels (Figure 1C) pro-

duced an occupancy of 52%. Cryo-EM analysis

and three-dimensional reconstruction (3DR) of

these TLP showed an equivalent occupancy

(~50%) when the relative density of the spikes in

the 3DR is determined using the VP2-VP6-VP7

shell density as a reference (Figure 1—figure

supplement 1). This occupancy correlates with

the different number of spikes detected in the

AFM images of single TLP (Figure 2—figure sup-

plement 1). Since lateral spikes are easily

removed by the AFM tip (Video 1), we analyzed

the upper ~1/3 region of the virus surface, where

the spikes point upwards and present a maximum

resistance to AFM imaging. Although we cannot

ignore that the AFM tip could remove some

Video 1. Mechanical fatigue over TLP in TNC buffer

during 32 frames (~82 min) at 100–200 pN per pixel (1

pixel = 1.4–2.3 nm). This video corresponds to the

particle of Figure 5A. White arrows indicate the line

where the profiles have been obtained.

DOI: https://doi.org/10.7554/eLife.37295.010
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Figure 3. Single-indentation assay of TLP and subviral particles. (A–C) AFM topographies of an individual TLP (A),

DLP (B) and SLP (C) before (left) and after (right) nanoindentation. (D) Force Indentation Curves (FICs) measured

for each individual TLP (N = 7 from 45), DLP (N = 7 from 11) and SLP (N = 7 from 16), as indicated. The average

curve is highlighted for each specimen. Double headed arrows indicate plastic deformation, as explained in text.

FIC data are available from Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.37295.011

Figure 3 continued on next page
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spikes, we minimized this effect by using the first image obtained for each particle. Our AFM topog-

raphies, which uniquely allow for the first time the direct imaging of the individual spikes, provide a

more realistic view of the RV virion as a distribution ranging from fully decorated to almost naked

particles. (Figure 2 and Figure 2—figure supplement 1). We can directly observe an average occu-

pancy of 35%, compatible with electrophoretic and cryo-EM bulk analysis results. These data support

the in vitro recoating assays, demonstrating that an occupancy as low as 10% is enough to generate

particles with high specific infectivity (Trask and Dormitzer, 2006).

Single indentation assay
In order to investigate the contribution of the different layers to the mechanical stability of the RV

particle, systematic single indentation experiments of the different particles were performed (Fig-

ure 3) resulting in broken structures. In order to understand the nature of each particle breakage it

is interesting to compare their topographies before and after fracture (Figure 3A–C), and to con-

sider the average indentation curves for each type of structure (Figure 3D, strong colors). While TLP

breaks into large fragments (Figure 3A, right), both DLP and SLP show circular deformations that

can be attributed to the tip apex (Figure 3B–C, right). The average of TLP nanoindentation curves

(Figure 3D, strong red) shows a linear regime that corresponds to the virus elastic deformation up

to ~2.0 nm at ~2.1 nN, where the elastic limit is reached. Afterwards the structure yields plastically

without breaking until 2.5 nN at 4.7 nm, during 2.7 nm (red double headed arrow, Figure 3D),

where the downwards slope indicates fracture. The same reasoning applied to both DLP and SLP

result in plastic deformations of ~13 nm and ~39 nm, respectively (blue and green double headed

arrows, Figure 3D). Virus topographies and indentation assays indicate that while TLP undergoes a

brittle (glass-like) fracture, both DLP and SLP experience ductile (rubber-like) breakage.

Stiffness and yield strain of TLP and RV subviral particles
The analysis of single particle FIC charts (Figure 3D) provides some mechanical parameters. In par-

ticular, the linear fitting of the curves before reaching the elastic limit informs about the particle elas-

tic constant or stiffness (Figure 4A). Statistical analysis of the FIC linear part result in spring

constants of kTLP = 0.76 ± 0.30 N/m, kDLP = 0.34 ± 0.20 N/m and kSLP = 0.22 ± 0.07 N/m. The elastic

limit can be linked to the breaking force of the probed particle. The analysis of the breaking force

provides values of 2.9 ± 0.5 nN, 0.9 ± 0.3 nN and 0.45 ± 0.10 nN for TLP, DLP and SLP, respectively

(Figure 4B). This monotonic decrease of both the spring constant and breaking force with the reduc-

tion of the number of layers indicates that virus mechanics captures the reinforcement nature of con-

centric shells: the more layers in the structure, the stronger it becomes. The calculation of the yield

strain " ¼
Dh

h0
(Figure 4—figure supplement 1), where Dh is the indentation corresponding to the

force at the elastic limit and h0 the height of the intact particle, reveals that TLP, although with a

high dispersion, can sustain larger elastic deformations than DLP and SLP. This simultaneous high

rigidity and yield strain is exceptional since an increment in the spring constant and breaking force is

usually associated with a lower yield strain as it happens, for example, with glass (Schijve, 2009).

Finite elements analysis of TLP and RV subviral particles
The analysis of how the TLP and DLP inform upon the mechanical properties of VP6 and VP7 layers

has to be considered with care. The only layer for which an individualized analysis of the mechanical

properties can be performed is the SLP. Although the genome and the replication/transcription

machinery reside inside the VP2 shell, it is expected that they have no relevant effect on the par-

ticle’s response to deformation. The relatively low packing fraction of RV (~20%) compared to pres-

surized dsDNA viruses (Purohit et al., 2005) suggests a small pressure whose influence on the

effective elastic constant will be smaller than our error bars. In any case, the presence of the core

would only affect to the estimation of the Young’s Modulus of the VP2 layer, but not to the inferred

Figure 3 continued

The following source data is available for figure 3:

Source data 1. Indentation curves.

DOI: https://doi.org/10.7554/eLife.37295.012
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Figure 4. Mechanical properties. Box plots of (A) elastic constant, and (B) breaking force calculated from the FIC

(Figure 3) for TLP (red, N = 45), DLP (blue, N = 11) and SLP (green, N = 16), as explained in text. Data are

Figure 4—source data 1 and 2. The yield strain (e) which is a combination of elasticity and breaking force, can be

found in Figure 4—figure supplement 2. (C) Stress distribution at 4 nm of indentation in the models used in the

FE simulations of SLP (left), DLP (middle) and TLP (right). Inset color scale represents the value of the von Mises

stress in Pa. See Materials and methods and Figure 4—figure supplement 1 for more information.

DOI: https://doi.org/10.7554/eLife.37295.013

The following source data and figure supplements are available for figure 4:

Source data 1. Spring constants of Figure 4A.

DOI: https://doi.org/10.7554/eLife.37295.017

Source data 2. Breaking forces of Figure 4B.

DOI: https://doi.org/10.7554/eLife.37295.018

Figure 4 continued on next page
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properties of the VP6 and VP7 layers. For TLP and DLP, the isolation of the mechanical parameters

for VP7 and VP6 layers is also complex because they include internal shells with their mutual interac-

tions. Specifically, the mechanical response of DLP is due to the VP6 shell and the internal SLP,

whereas in the TLP there is an additional contribution of the VP7 layer. Taking this into account, FE

simulations (Gibbons and Klug, 2008) were performed to extract the effective Young’s moduli for

the different capsid layers from the measured spring constants kSLP, kDLP, kTLP (see Materials and

methods and Figure 4—figure supplement 1). The nanoindentation of SLP was implemented first,

yielding a value for the Young’s modulus of YVP2 = 0.53 ± 0.20 GPa. A second layer of 8 nm thick-

ness, representing that of VP6, was added on top of the VP2 layer, and a Young’s modulus

YVP6 = 0.08 ± 0.07 GPa was needed to recover the spring constant of DLP, kDLP. Finally, a 3.5 nm

thick third layer was placed on top of the DLP, requiring a Young’s modulus YVP7 = 1.0 ± 0.9 GPa to

yield the same spring constant as the TLP, kTLP. We can compare the Young’s modulus between

layers resulting in YVP7 / YVP6=12 and YVP2 / YVP6=6.5. Figure 4C shows the map of the stress sup-

ported by the constituent layers of each subviral particle, demonstrating that the VP7 layer accumu-

lates most of the stress in TLP. Thus, nanoindentation experiments and FE analysis, indicate the VP7

shell to be the stiffer layer of the RV structure, but also the most elastic, whereas the thick VP6 layer

is remarkably soft and brittle.

Mechanical fatigue
While the single indentation assay probes the global mechanical response of virus particles, fatigue

experiments explore the local response of the virus building blocks (capsomers). Mechanical fatigue

experiments are performed by applying cyclic forces of ~100 pN, well below the breaking force (~1

nN), at every pixel of the virus (Ortega-Esteban et al., 2013) and the gradual disassembly of viral

particles is typically induced (Hernando-Pérez et al., 2014a). Cyclic imaging of the TLP (Figure 5A,

left) at forces between 100 pN to 200 pN per pixel shows that, while the VP4 spikes are removed

from the particle surface in a few frames (Figure 5A, middle and Video 1), the VP7 layer remains

mostly intact (Figure 5A, right) during 80 frames (light red in Figure 5E, Figure 5—figure supple-

ment 1 and Video 5). These results illustrate that the spikes are easily removed by the AFM tip and

are not strongly anchored. However, the VP7 layer displays a strong resistance against fatigue, in

agreement with the high stiffness and breaking force demonstrated in single indentation assay

experiments. A strong binding energy between capsomers would not only result in a high resistance

of individual proteins against fatigue, but also will contribute to a high breaking force when all cap-

somers are probed in a single indentation assay experiment. We have found similar results before in

lambda phage (Hernando-Pérez et al., 2014a).

The current model proposes a calcium concentration drop in endosomal compartments during

RV entry as the factor that triggers VP7 disassembly and membrane penetration (Arias et al., 2015).

In fact, calcium depletion by chelating agents (as EDTA) (Estes et al., 1979) is used to uncoat TLP to

DLP by inducing VP7 trimer dissociation (Figure 1). To explore the structural consequences of this

process in real time, we carried out fatigue assays on TLP while EDTA simultaneously flowed in the

AFM liquid chamber, as described in Material sand methods, to induce the gradual depletion of Ca

ions of the particles (Figure 5B, Video 2). In these conditions, fatigue induces the neat VP7 detach-

ment from the VP6 subjacent layer (indicated by a circle in Figure 5B#19) even before the spikes are

removed. Indeed, the evolution of the topographic profiles (dark red in Figure 5E) show abrupt

downwards steps very close to the VP7 thickness (red arrow of Figure 5E) indicating that TLP parti-

cle loses VP7 completely while keeping VP6 (Video 2). These results not only suggest that Ca ions

mediate the interaction between VP7 and VP6 layers, but also that the absence of ions weakens the

interaction between VP7 subunits. If fatigue continues, VP6 subunits are neatly removed from VP2

Figure 4 continued

Figure supplement 1. Finite element model of the RV particle.

DOI: https://doi.org/10.7554/eLife.37295.014

Figure supplement 2. Yield strain.

DOI: https://doi.org/10.7554/eLife.37295.015

Figure supplement 2—source data 1. Critical strain of Figure 4—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.37295.016
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Figure 5. Fatigue of TLP and subviral particles. Topographic evolution of TLP (A), TLP + EDTA (B), DLP (C) and

SLP (D) during continuous imaging at low force (~60–120 pN) indicating the corresponding displayed frames. (E)

Topographic evolutions obtained at the position indicated with a white cross (A–D) in TLP (red), DLP (blue) and

SLP (green) particles. Dark red color indicates fatigue of TLP + EDTA. Red and blue arrows indicate the loss of

height from TLP to DLP and for DLP to SLP, respectively. Data are available from Figure 5—source data 1.

Videos 1–4 present the temporal evolution of these particles.

DOI: https://doi.org/10.7554/eLife.37295.019

The following source data and figure supplements are available for figure 5:

Source data 1. Data height evolution with mechanical fatigue.

Figure 5 continued on next page
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layer (circle in Figure 5B#29). Therefore, VP6 shell appears as a weak shell whose interaction with

the beneath VP2 layer is not very strong, since it peels off rapidly to reveal the SLP.

We found similar results on experiments performed on DLP. Again, fatigue induced a clean VP6

disassembly after less than 10 frames (circle in Figure 5C#8, and Video 3). In this case the evolution

of the topographic profiles (blue in Figure 5E) undergoes sharp reductions very close to the VP6

thickness, inducing the gradual uncovering of the innermost VP2 (blue arrow in Figure 5E). These

experiments not only illustrate a weak interaction between VP6 and VP2 layers, but also a very fee-

ble VP6-VP6 binding force. Finally, the thin SLP VP2 is highly unstable under fatigue experiments col-

lapsing well before reaching 10 frames (green in Figure 5D, and Video 4).

RV TLP nanoindentation-fatigue combined analysis
We have seen that removing of Ca ions is key for inducing the transition from TLP to DLP in the

fatigue experiments (Figure 5A–B, and red charts in Figure 5E). To access to VP6 and VP2 layers in

the presence of Ca ions, we combined single indentation with fatigue assays. Our aim is to produce

local disruptions in the TLP shell by performing a controlled FIC and then monitor the progressive

disassembly induced by fatigue experiments. Therefore, we intent to crack the three layers at once

without tearing apart the particle like in Figure 3A, by adjusting the indentation up to 40 nm (data

not shown) after imaging the TLP 24 times (Figure 6A#24). Right after the FIC (Figure 6A#25), the

induced fracture reaches a maximum depth of ~23 nm that includes the thickness of the three layers

(Figure 6B). However, the shape of the crack shows that some VP2 layer has been exposed

(Figure 6B, dotted line) and its distance to the VP7 layer external face is compatible with the thick-

ness of VP7 and VP6 layers (3,5 and 8 nm, respectively). The subsequent fatigue cycles increased the

VP2 uncovered area (Figure 6A#56, Video 6) without any signature of the TLP-DLP transition. These

experiments indicate that VP6 hardly survives to VP7 removal, supporting a strong interaction

between VP7 and VP6 layers in the presence of Ca and, once again, a weak binding between VP6

and VP2.

Discussion
The characterization of the biophysical properties of viral particles has proven to be a powerful

approach to understand the connection between

structure and function in different systems (Mor-

eno-Madrid et al., 2017). Our mechanical analy-

sis of the multilayered RV particle offers new

opportunities to explore the interplay between

structure, function and mechanics. In particular,

the atomic structure of the layers provided by

X-ray crystallography and cryo-EM

(Settembre et al., 2011; McClain et al., 2010;

Zhang et al., 2008), allows the discussion of our

results at a molecular level. This architecture

informs about the interactions among the viral

proteins, including the analysis of contact surfa-

ces and their electrostatic nature. Analysis of the

electrostatic potential of the different RV par-

ticles (Figure 7A–C) shows that the core shell

presents a mainly hydrophobic outer surface

(Figure 7A) in agreement with its tendency to

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.37295.022

Figure supplement 1. Fatigue of TLP.

DOI: https://doi.org/10.7554/eLife.37295.020

Figure supplement 1—source data 1. Profiles of the Figure 5—figure supplement 1B

DOI: https://doi.org/10.7554/eLife.37295.021

Video 2. Mechanical fatigue over TLP in TNC buffer

being gradually replaced by TNE buffer (pumping TNE

buffer and withdrawing liquid from the sample at 1 ml/

min), during 31 frames (~80 min) at 50–60 pN per pixel

(1 pixel = 3.1 nm). This video corresponds to the

particle of Figure 5B. White arrows indicate the line

where the profiles have been obtained.

DOI: https://doi.org/10.7554/eLife.37295.023
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form aggregates (Labbé et al., 1991; Desselberger et al., 2013). While treatment of these cores

with electrolytes or different pH do not solubilize them, incubation with some detergents like deoxy-

cholate (Desselberger et al., 2013) or with trehalose (Figure 1E) disperse them and suggest that

particle aggregation is produced by hydrophobic forces. In a RV infection SLP are localized in the

viroplasm, where viral RNA packaging and replication occur and where extensive protein-RNA and

protein-protein interactions prevent its aggregation (Zeng et al., 1998; Berois et al., 2003;

Vende et al., 2003). Over the hydrophobic outer surface of the VP2 T = 1 shell, VP6 pear-shaped

trimers assemble into five non-equivalent positions (Figure 7D–E, triangles) to build a T = 13 archi-

tecture, in what constitutes an extreme example of symmetry mismatch. These mismatched interac-

tions are mainly mediated by the hydrophobic VP6 inward-projecting loop 64–72 (Figure 7—figure

supplement 1) that contacts with the SLP outer surface, and are not only essential for assembly but

also for transcription (Charpilienne et al., 2002). Intertrimeric VP6 contacts are established through

their pedestal domains and have local 2-fold contacts. Both the VP2-VP6 and the intertrimeric VP6-

VP6 contacts are of modest extent. These weak protein-protein interactions, described in the struc-

ture, are in agreement with our experiments. In particular, VP6 trimers are quickly disassembled in

fatigue experiments (Figure 5C; blue in Figure 5E), proving poor lateral and perpendicular interac-

tions between VP6 trimers and VP6-VP2 units.

In contrast with the hydrophobic nature of the SLP outer surface, the calculation of the electro-

static potential surface of the DLP reveals a very negative outer surface (Figure 7B) (Mathieu et al.,

2001). The structures of the transcriptionally active particles of other dsRNA viruses present a similar

negatively charged outer surface (Figure 7—figure supplement 2), which may reflect a common

strategy to avoid the interaction with the newly synthesized negative charged transcripts. In addition

to transforming the SLP particle in the transcription-active DLP (Lawton et al., 1997), the VP6 that

polymerizes on the surface of the SLP acts as an adaptor for the interaction with the outer RV shell

(Figure 7F–G). VP7 trimers are stabilized through the binding of calcium ions at each subunit inter-

face (Aoki et al., 2009). The bottom inner surface

of the VP7 trimer has minimal contacts with the

VP6 trimer apex of which the most intense is

mediated by the VP7 N termini that embraces

the underlying VP6 trimer (Figure 7H). These

arms also interact with adjacent VP7 trimers gen-

erating a cooperative lattice that reinforce the RV

outer shell. Our fatigue experiments (Figure 5)

demonstrate weak interactions of VP6, both

intertrimeric and with the VP2 layer. These analy-

ses also suggest a strong interaction of the VP7

trimers with the underlying VP6 and with the sur-

rounding VP7 trimers in the presence of calcium

(Figure 6). Many viral particles are stabilized by

calcium ions bound to the interfaces between

Video 5. Mechanical fatigue over TLP in TNC buffer

during 81 frames (~180 min) at 60–100 pN per pixel (1

pixel = 2.7 nm). This video corresponds to the particle

of Figure 5—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.37295.026

Video 3. Mechanical fatigue over DLP in TNC buffer

during 17 frames (~45 min) at 60–70 pN per pixel (1

pixel = 2.0 nm). This video corresponds to the particle

of Figure 5C. White arrows indicate the line where the

profiles have been obtained.

DOI: https://doi.org/10.7554/eLife.37295.024

Video 4. Mechanical fatigue over SLP in TNC buffer

during seven frames (~18 min) at 60–70 pN per pixel (1

pixel = 2.3 nm). This video corresponds to the particle

of Figure 5D. White arrows indicate the line where the

profiles have been obtained.

DOI: https://doi.org/10.7554/eLife.37295.025
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their capsomers which is allowed by the unique

coordination chemistry of the Ca ion (Zhou et al.,

2009; Carafoli and Krebs, 2016). These ions are

required to maintain the capsid structural integ-

rity and/or regulate its proper assembly/disas-

sembly (Zhou et al., 2009). Examples include

bacteriophages of the Leviviridae and Microviri-

dae families (McKenna et al., 1996;

Persson et al., 2008); plant Tombusviruses (and

its associate satellite virus), Sobemoviruses, Bro-

moviruses or Virgaviruses (Harrison et al., 1978;

Jones and Liljas, 1984; Speir et al., 1995) and

different animal viruses including members of the

Polyoma, Noda, Picorna, Birna and Parvoviridae

families (Tsao et al., 1991). Actually, previous

studies have directly probed the mechanical role

Figure 6. Combination of single indentation and fatigue assays. (A) Topographical evolution of a TLP subjected to

fatigue until image #24, where a controlled FIC locally perforated the three layers. Frame #25 shows the particle

right after the FIC. Topography #56 is the same particle 31 frames after the FIC. Imaging force of ~100 pN. (B)

Height profile evolution obtained at the white arrows depicted in the topographies. Dotted grey line indicates the

position of VP2 layer. Data are available from Figure 6—source data 1. Video 6 presents the temporal evolution

of this particle.

DOI: https://doi.org/10.7554/eLife.37295.027

The following source data is available for figure 6:

Source data 1. Profiles of Figure 6B.

DOI: https://doi.org/10.7554/eLife.37295.032

Video 6. Mechanical fatigue over TLP in TNC buffer

during 72 frames (~155 min) at 100–120 pN per pixel (1

pixel = 1.3 nm). Two moderate nanoindentations

of ~ 40 nm were performed at frames 24 and 66,

respectively. This video corresponds to the particle of

Figure 6.

DOI: https://doi.org/10.7554/eLife.37295.028
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of calcium ions in the shell stability of tomato bushy stunt virus nanoparticles (Llauró et al., 2015).

Surprisingly, the inward facing electrostatic potential surface of the VP7 layer (Figure 7F) is highly

negative. We propose that calcium ions, beyond stabilizing the VP7 trimers, would be sandwiched

between the VP7 inner and VP6 outer surfaces to allow their assembly. VP7 assembles into trimers

Figure 7. Molecular interactions of TLP and subviral particles. Electrostatic potential of the outer surface of SLP (A), DLP (B) and TLP (C). Positive charge

distribution is represented in blue, negative in red and hydrophobic in white. (D) Electrostatic potential of the inner surface of a VP6 trimer. (E)

Electrostatic potential of the outer face of the VP2 shell. The positions for the interaction of the five quasi-equivalent trimers on the VP2 surface are

marked with triangles of different colors. (F) Electrostatic potential of the inner surface of a VP7 trimer. (G) Electrostatic potential of the outer surface of

a VP6 trimer. (H) Schematic representation of the VP2 (green), VP6 (blue) and VP7 (yellow) layers interaction. Thick black springs indicate a relatively high

VP7-VP7 and VP6-VP7 interactions. The thin white springs point to weak VP6-VP6 and VP6-VP2 interactions. In panels D-G the insets indicate the point-

of-view.

DOI: https://doi.org/10.7554/eLife.37295.029

The following figure supplements are available for figure 7:

Figure supplement 1. VP6 trimer atomic structure.

DOI: https://doi.org/10.7554/eLife.37295.030

Figure supplement 2. Outer surface of dsRNA virus transcription machineries with electrostatic potential.

DOI: https://doi.org/10.7554/eLife.37295.031
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that are stabilized through the binding of two calcium ions at each subunit interface (Aoki et al.,

2009). Thus, the depletion of calcium will promote the destabilization of the VP7 intertrimeric inter-

actions and induce the rapid disassembly of this shell by the destabilization of the VP7/VP6 electro-

static interactions (Figure 5B).

Mechanical parameters, such as stiffness, breaking force and yield strain also inform of important

differences between the three layers (Figure 4). Similar to that observed for the height distribution

(Figure 2E), the dispersion detected for TLP stiffness kTLP (Figure 4A) could be correlated with the

unequal presence and distribution of spikes in each particle. The incorporation of the VP7 layer on

the DLP produces a significant increase in stiffness (Figure 4A) and yield strain (Figure 4—figure

supplement 2). Thus, while the Young’s modulus value of the VP7 shell is within the highest values

as obtained for bacteriophages (Roos et al., 2012; Ivanovska et al., 2004), the VP6 layer presents

the lowest value ever reported for a viral protein shell (Marchetti et al., 2016). In fact, the FE simula-

tions of the TLP show that the stiff VP7 layer accumulates most of the stress during the indentation

(Figure 4C), protecting the internal VP6 and VP2 layers by shielding the stress transmission to these

layers. Taken together, nanoindentation and mechanical fatigue experiments demonstrate that the

VP7 shell provides the resistance needed by the RV particle to bear with the severe conditions of

extracellular media. RV is transmitted through the faecal-oral route and has to overcome the strin-

gent physicochemical conditions of digestion at both the stomach and small intestine, where it

infects mature enterocytes (Estes and Greenberg, 2013; Ramig, 2004). The viscosity of the chyle

(Jonas, 1976) is about 10 to 100 times larger than the host cytoplasm (Luby-Phelps et al., 1993)

and presents higher molecular crowding (Hernando-Pérez et al., 2014a). Therefore, the VP7 shell

has to be stable enough to overcome the constant barrage of molecular impacts in the small intes-

tine. In fact, fatigue experiments provide a good approximation for these molecular impacts on RV

particles (Hernando-Pérez et al., 2014a). Interestingly, the VP7 shell of TLP is able to withstand

fatigue even at 200 pN (Figure 5A) indicating a strong intercapsomeric linkage. The labile nature of

VP6 layer, showing both the lowest values of elasticity and Young’s modulus, is related with their

structure (weak contacts of the VP6 trimers with VP2 and between them) and we propose that this

feature is necessary for its function. It has been suggested that removal of VP7 causes the dilation of

the particle pentameric channels allowing the flux of nucleotides, ions and transcripts (Chen et al.,

2009; Aiyegbo et al., 2013). The removal of VP7 promotes the outward movement of the VP6 pen-

tameric trimers. This conformational change is transmitted through the underlying VP2 decamer to

the VP1 polymerase, enabling its activity. In other viruses, such as MVM (Castellanos et al., 2012) a

similar conformational dynamics is favored by a low mechanical stability. In particular, the increase of

local stiffness in MVM mutants blocks the conformational changes required for dsDNA translocation.

Similarly, the high flexibility resulting from the low mechanical stability of the trimeric VP6 layer

would favor its functional roles: this thick layer becomes the adaptor that allows the transformation

of a highly hydrophobic SLP into a negative-charged DLP, overcoming the symmetry mismatch

between the T = 1 and T = 13 layers, and generating a transcriptionally active particle. The VP6 shell

constitutes the thickest and, according to our data, the softest layer of the RV particle, which allows

for large deformations when TLP or DLP are adsorbed (Figure 2 and Figure 2—figure supplement

2). Finally, the SLP exists only in the viroplasm environment during RNA packaging and replication.

The high electrodensity of the viroplasm is a signature of a large concentration of macromolecules

that results in a higher molecular crowding than the cytoplasm. This fact would explain the higher

Young’s modulus value of VP2 layer when compared with that of VP6. This Young’s modulus com-

bined with a presumably smaller adsorption energy with the substrate, result in non-deformed parti-

cle after adsorption, as it happens with other virus capsids (Carrasco et al., 2009).

In this mechanical study of a multi-layered virus we have shown how the biophysical properties

and interactions of the three particle shells are finely tuned to produce an infective RV virion. While

the high mechanical strength provided by the strong VP7-VP7 and VP7-VP6 interactions (Figure 7H,

black springs) relates to protection tasks, the lower resistance of the VP6-VP6 and VP6-VP2 interac-

tions (Figure 7H, white springs) guarantees the conformational dynamics required for transcription.

Importantly, the interference with this finely tuned mechanical regulation offers new venues for

development of antiviral strategies.
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Materials and methods

Key resources table

Reagent type
(species)or resource Designation Source or reference Identifiers Additional information

Cell line
(Chlorocebus aethiops)

MA104 ECACC Cat# 85102918 RRID:CVCL_3845

Biological sample
(Rotavirus A)

SA11-C4111 PMID: 11913378 GenBank:KJ450831;
KJ450832;KJ450833;
KJ450834;KJ450835;
KJ450836;KJ450837;
KJ450838;KJ450839;
KJ450840;KJ450841

Software, algorithm Xmipp PMID: 15477099 http://xmipp.cnb.csic.es
/twiki/bin/view/Xmipp/WebHome

Software, algorithm RELION PMID: 23000701 RRID:SCR_016274 https://www2.mrc-lmb.cam.ac.uk/
relion/index.php?title=Main_Page

Software, algorithm COMSOL Multiphysics 4.3 Comsol,
Stockholm, Sweden

RRID:SCR_014767

Software, algorithm CTFFIND3 PMID: 12781660 http://grigoriefflab.janelia.org/ctf

Software, algorithm Delphi PMID: 11913378 http://honig.c2b2.columbia.edu/delphi/

Software, algorithm UCSF Chimera PMID: 24873828 RRID:SCR_004097 https://www.cgl.ucsf.edu/chimera/

TLP, DLP and SLP production and purification
The simian rotavirus strain SA11-C4111 (Rodrı́guez et al., 2014) was used in this study. Viruses were

grown using the monkey epithelial cell line MA104 (ECACC 85102918), cultured in MEM with 10%

fetal calf serum, and used between passages 10 and 25. The amplified viruses were used within

three passages of the last plaque isolation step.

For the production of TLP, 3 day post-confluent monolayers of MA104 cells were infected with a

multiplicity of 0.5 PFU/cell. Activation of the viruses was performed for 30 min at 37˚C with 100

BAEE U/ml of TPCK-treated trypsin (TPCK Trypsin, Thermo Scientific Pierce). To remove serum, cell

monolayers were washed twice with MEM prior to absorption (60’, 37˚C). After absorption, mono-

layers were washed with MEM and incubated in MEM containing 10 BAEE U/ml TPCK-trypsin. Cells

and extracellular media were harvested when total cytopathic effect was observed. TLP were puri-

fied from these extracts as previously indicated (Rodrı́guez et al., 2014). Purified TLP were diluted

to 0.2 mg/ml of protein content in 1xTNC (10 mM Tris:HCl pH 7.5, 140 mM NaCl, 10 mM CaCl2)

containing 10% glycerol and 0.02% sodium azide, flash frozen in liquid nitrogen as small (5 ml) ali-

quots, and stored at �80˚C.
The preparation of DLP from purified TLP by treatment with EDTA at 37˚C and its isolation in

CsCl gradients has been performed as described by Patton et al (Patton et al., 2000). Purified DLP

were diluted to 0.2 mg/ml of protein content in 1xTNE (10 mM Tris:HCl pH 7.5, 140 mM NaCl, 1

mM EDTA) containing 10% glycerol and 0.02% sodium azide flash frozen in liquid nitrogen as small

(5 ml) aliquots, and stored at �80˚C.
SLP were prepared form purified DLP by treatment with 1.25M CaCl2 in a solution containing

0.75M trehalose, 0.15M NaCl, 20 mM Borate buffer (pH 8.45) and Complete-EDTA Free protease

inhibitors (Roche) at the manufacturer recommended concentration. DLP, at a concentration of 100

mg/ml, where incubated for 2 hr at 37˚C with gentle agitation. After the treatment, the concentration

of trehalose in the mixture was reduced to 0.25M by dilution with two volumes of the buffer without

trehalose, and incubated at room temperature (22˚C) during 90 min, with gentle agitation. SLP were

concentrate by centrifugation (20.000 g, 60 min, 22˚C) and resuspended in a buffer containing

1.50M trehalose, 0.15M NaCl, 20 mM Tris:HCl (pH 8.45) and Complete-EDTA Free protease inhibi-

tors (Roche) at the manufacturer recommended concentration. Purified SLP were diluted to 0.2 mg/

ml in 1xTNC containing 0.5M trehalose, flash frozen in liquid nitrogen as small (5 ml) aliquots, and

stored at �80˚C.
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Electron microscopy and image processing
For transmission electron microscopy, purified particles were applied to glow-discharged carbon-

coated grids and negatively stained with 2% aqueous uranyl acetate. Images were recorded on a

Gatan 1 k CCD camera in a FEI Tecnai 12 microscope operated at 120 kV.

For cryo-EM, samples were applied to Quantifoil R 2/2 holey grids, blotted, and plunged into liq-

uid ethane using a Leica EM CPC cryo-fixation unit. Cryo-EM images were recorded in low-dose con-

ditions (~10 e-/Å [Müller et al., 2002]) on a FEI Eagle 4 k CCD using a Tecnai G2 electron

microscope operating at 200 kV and a detector magnification of 67,873X (2.16 Å/pixel sampling

rate).

Image processing operations were performed using Xmipp (Marabini et al., 1996) and Relion

(Scheres, 2012) and graphic representations were produced by UCSF Chimera (Pettersen et al.,

2004). Xmipp automatic picking routine was used to select 4238 particles and defocus was deter-

mined with CTFfind3 (Mindell and Grigorieff, 2003). Images were 2D classified using the corre-

sponding Relion routine to select 4200 homogenous particles. To avoid any bias at the spike

density, the published structure of the rotavirus VP7-recoated particle (Chen et al., 2009), low-pass

filtered to 30 Å, was used as initial model for Relion to obtain a 3DR using the corresponding Relion

autorefinement routine. Resolution was assessed by gold standard Fourier Shell Correlation (FSC)

between two independently processed half datasets. Applying a correlation limit of 0.5 (0.3), the res-

olution is 14.2 (12.6).

The electrostatic potentials were calculated using DelPhi software (Rocchia et al., 2002) and sur-

face-colored with UCFS Chimera.

AFM experiments
Measurements were carried out with an AFM (Nanotec Electrónica S.L., Madrid, Spain) operating in

Jumping Mode Plus (Ortega-Esteban et al., 2012). This intermittent-contact imaging mode consists

on performing low force-versus-Z-piezo-displacement (FZ) curves at every point of the imaging area,

with nanometric lateral movements of the sample where it is far (~40 nm) from the tip. All the experi-

ments were carried out with rectangular silicon-nitride cantilevers (RC800PSA, Olympus, Tokyo,

Japan) with nominal springs constants of 0.05 N/m, and were routinely calibrated using the Sader’s

method (Sader et al., 1999). The obtained images were processed using the WSxM software

(Horcas et al., 2007).

For adsorption of particles, one 5 ml aliquot of particles was thawed on ice and diluted to 50 ml

with TNC (for TLP and DLP) or in TNC-Trehalose (for SLP). They were incubated for 15 min on freshly

cleaved highly oriented pyrolytic graphite (HOPG; ZYA quality; NT-MDT, Tempe, AZ). The non-

adsorbed particles were removed by performing several washes consisting in the addition of 50 ml of

TNC and the extraction of 50 ml of the sample. The tip was also prewetted with a 20 ml drop of TNC

before starting the image acquisition process.

For single nanoindentation assays, individual particles were deformed with the AFM tip by per-

forming single force curves at a constant speed (150 nm/s) and with a high Z piezo displacement

(150 nm) to ensure that the tip always reached the substrate after the disruption of the particle.

Images before and after the FZ were obtained to observe the structural damages suffered by each

particle. The mechanical properties (elastic constant, breaking force and critical strain) were obtained

from these FZ curves.

For cyclic loading assays, the topographic image acquisition with the AFM tip was used to

mechanically fatigue single particles (TLP, DLP and SLP), causing their guided disassembly and allow-

ing to image the dynamics of the process. The number of scanning points in the ‘x’ and ‘y’ coordi-

nates (128 in each direction), and the size of the image (~300 nm) were established to apply one

loading cycle each ~2–3 nm.

Real time experiments of TLP disassembly while removing Ca ions was carried out as follows.

TLP were initially in the AFM liquid chamber with 70 ml of TNC buffer. This chamber was con-

nected to two syringe pumps (NE-1000, New Era Pump Systems, Inc.). One of the syringes was used

for pumping TNE buffer into the chamber while, simultaneously, the other syringe was withdrawing

liquid. The pumping/withdrawing rate was 1 ml/min, and the fatigue experiments lasted ~80 min.

Under these conditions TNC buffer was totally replaced by TNE at the end of the experiment, thus

ensuring the chelation of all the Ca2 +ions initially present in the TLP.
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Finite Element (FE) simulations of rotavirus
Finite elements simulations mimicking the AFM nanoindentation of the different rotavirus particles

were performed using the program COMSOL Multiphysics 4.3 (Comsol, Stockholm, Sweden). In the

simulations, each layer was modeled as a homogenous spherical shell made of a material with

Young’s modulus E and Poisson ratio n = 0.3 (a standard value for protein-like materials). This model

shell was placed on a hard flat substrate and indented by a hard spherical object with radius Rin = 15

nm, mimicking the nominal radius of the AFM tip. The system was simulated using a 2D axisymmet-

ric model that was meshed with over 1400–6000 triangular elements. The contacts between the shell

and the tip as well as the supporting surface during indentation were implemented with a contact

normal penalty factor. This parameter controls the hardness of the interface surface and it is used to

prevent the penetration of the two boundaries coming into contact. The penalty factor used was

Y/Dx, where Y is the Young’s modulus and Dx is the minimum element size of the mesh of the mate-

rial which is indented. A parametric, non-linear solver was used to simulate the stepwise lowering of

the tip onto the capsid. The spring constant was obtained in all cases from the slope of the force ver-

sus indentation curves at a small value of the indentation of 2 nm. For multilayer shells, two different

cases were simulated: a model in which the shells are joint and coupled (using the COMSOL option

Union to finalize the geometry), and a second case in which the layers are independent and

uncoupled (using the option Assembly to finalize the geometry). In both cases, the results for the

stress distribution, the force-indentation curves and the spring constant for small indentations were

identical.

The error bars in the values of Young’s modulus for the different layers were calculated in the

FEM simulations in the following way. For each value of the experimental spring constant k±dk, we

did FEM simulations to find which value of the Young’s modulus, Y, was giving a slope of k; which

value, Ymin, was giving a slope k-dk; and which value, Ymax, was yielding k+dk. The best estimate and

approximated uncertainty in the Young’s modulus were reported as Y±(Ymax-Ymin)/2. The SLP was

modeled as a spherical shell with an external radius R = 27 nm and thickness h = 3.5 nm (see inset in

Figure 4—figure supplement 1). A Young’s modulus of Y1 = 0.53 ± 0.20 GPa was used in order to

recover the same slope in the simulations as the one measured experimentally.

The DLP was modeled as a double-layer spherical shell with an external radius R = 35 nm, made

of an outer layer with Young’s modulus Y2 = 0.0815 ± 0.070 GPa and thickness h = 8.0 nm, and an

inner layer with Young’s modulus Y1 = 0.53 ± 0.20 GPa and thickness h = 3.5 nm (see inset in Fig-

ure 4—figure supplement 1).

Finally, the TLP was modeled as a triple-layer spherical shell, by adding a third layer with Young’s

modulus Y3 = 1.0 ± 0.9 GPa and thickness h = 3.5 nm, mimicking the VP7 (see inset in Figure 4—fig-

ure supplement 1).
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