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Abbreviations 

AMI   acute myocardial infarction 

β3AR    β3 adrenergic receptor 

CMR   cardiovascular magnetic resonance 

IRI   ischemia/reperfusion injury 

IS   infarct size 

LV   left ventricle 

LVEDV   left ventricular end-diastolic volume 

LVEF   left ventricular ejection fraction  

LVESV   left ventricular end-systolic volume 

NOS   nitric oxide synthase 
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Abstract 

The administration of the selective β3 adrenergic-receptor (β3AR) agonist BRL-37344 protects 

from myocardial ischemia/reperfusion injury (IRI), although the lack of clinical approval limits 

its translatability. We tested the cardioprotective effect of mirabegron, the first-in-class β3AR 

agonist approved for human use. A dose-response study was conducted in 6 pigs to select the 

highest intravenous dose of mirabegron without significant detrimental hemodynamic effect. 

Subsequently, closed-chest anterior myocardial infarction (45min ischemia followed by 

reperfusion) was performed in 26 pigs which randomly received either mirabegron (10µg/kg) or 

placebo 5min before reperfusion. Day-7 cardiac magnetic resonance (CMR) showed no 

differences in infarct size (35.0±2.0% of left ventricle (LV) vs. 35.9±2.4% in mirabegron and 

placebo respectively, p=0.782) or LV ejection fraction (36.3±1.1% vs. 34.6±1.9%, p=0.430). 

Consistent results were obtained on day-45 CMR. In conclusion, the intravenous administration 

of the clinically available selective β3AR agonist mirabegron does not reduce infarct size in a 

swine model of IRI.  

 

Key words: cardioprotection; β3 adrenergic receptor; ischemia/reperfusion injury; acute 

myocardial infarction; translational models; mirabegron 
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Introduction  

Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity 

worldwide [1, 2]. Early coronary reperfusion limits myocardial infarct size (IS), which is the 

main prognostic determinant in post-AMI patients [3]. Paradoxically, reperfusion itself induces 

additional damage to the myocardium, known as ischemia/reperfusion injury (IRI) [4]. Beyond 

timely reperfusion, further IS-limiting therapies targeting the myocardial injury that occurs after 

ischemia/reperfusion are needed to further improve clinical outcomes [5].  

The β3 adrenergic-receptor (β3AR) is a G-protein-coupled receptor preferentially 

expressed in adipose tissue that has been raising interest as a cardiovascular target due to its 

expression in human cardiomyocytes and endothelial cells[6], as well as its protective role in 

several cardiovascular diseases [7]. The administration of the β3AR agonist BRL-37344 either 5 

min before or at the onset of reperfusion, has been demonstrated to reduce myocardial IS and 

improve cardiac function both in mouse [8, 9] and swine models of IRI [9]. Also, β3AR 

stimulation has been shown to improve left ventricular (LV) remodeling in small animal models 

of heart failure after non-reperfused MI [10] or pressure overload hypertrophy [11], as well as to 

improve right ventricular performance in a porcine model of chronic pulmonary hypertension 

[12]. Many of these protective effects are mediated through the nitric oxide synthase (NOS), as 

β3AR effects are abrogated with either its pharmacological or genetic inhibition [9, 13]. 

The β3AR agonist (mirabegron) is the first agent of this class clinically approved (in 

Europe, US and Japan) for treating overactive bladder [14]. However, there is no data regarding 

its potential benefit in the context of AMI, based on the principle of “drug repurposing” for a 

new cardiovascular indication. Confirmation of an infarct-limiting effect and long-term 

functional benefits from this new therapeutic strategy in a large animal model would have a 

significant translational impact and should be considered the first step before conducting a 

clinical trial in humans in this setting [15].  

We therefore hypothesized that the β3AR agonist mirabegron may provide a protective 

effect against myocardial IRI, improving both IS and LV function and remodeling. According to 
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this hypothesis, the aims of this study were (1) to assess the effect of the administration of 

mirabegron on hemodynamic parameters in a dose-response fashion and determine the optimal 

intravenous dose to use in subsequent experiments; (2) to investigate whether β3 stimulation 

with mirabegron reduces myocardial IS in a large animal model of IRI; and (3) to elucidate 

whether β3 stimulation with mirabegron improves ventricular remodelling and left ventricular 

ejection fraction (LVEF) in a large animal model of AMI. 

Methods 

Animals and drug 

All animal studies were conducted at the CNIC and approved by the local CNIC 

Institutional Animal Research Committee, and the Regional Animal Research Committee. All 

animal procedures conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC 

regarding the protection of animals used for experimental and other scientific purposes. 

Pharmocokinetics and bioavalability of mirabegron in healthy subjects and animals has been 

described elsewhere [16, 17]. 

Study design 

The study design consisted of two stages, the first to identify the best dose of 

mirabegron, and the second one to assess its cardioprotective effects. In phase one, we 

performed a dose-response evaluation aimed to determine the optimal intravenous dose to be 

uses subsequently in phase two. Four intravenous bolus doses of mirabegron (5, 10, 50 and 500 

µg/Kg) were administered alongside its vehicle (1 ml DMSO + 19 ml of saline) in a group of six 

healthy pigs under close monitoring through electrocardiogram, pulse oximeter, invasive 

systemic blood pressure (SBP) and right heart catheterization. A complete hemodynamic 

evaluation was obtained every minute during the first 5 min and then every 5 min until reaching 

20 min post-drug administration. The highest dose with no significant detrimental 

hemodynamic effects was chosen. No significant detrimental effect was defined as changes in 

hemodynamics of less than 10% with respect the baseline value.  
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In phase two, 26 pigs undergoing IRI (45 minutes coronary artery occlusion followed 

by reperfusion) were randomized to either receive a bolus of intravenous placebo (1 ml of 

DMSO + 19 ml of saline) or intravenous mirabegron (10 µg/kg diluted in 1 ml of DMSO + 19 

ml of saline) over a 30 seconds period at min 40 of ischemia (i.e. 5 minutes prior to 

reperfusion). Cardiac magnetic resonance (CMR) was performed at two time-points: a) day 7; 

and b) day 45, after reperfusion. The pre-defined primary endpoint of the study was IS (% LV 

mass) on day 7 CMR, while the main secondary endpoint was LVEF on day 45 CMR.  

 

Pig model of acute myocardial infarction 

AMI was experimentally induced in 3-month-old castrated male Large-white pigs bred 

at the CNIC’s farm. The protocol for AMI induction has been described in detail elsewhere[18]. 

Briefly, anesthesia was induced by intramuscular injection of ketamine (20 mg/kg), xylazine (2 

mg/kg), and midazolam (0.5 mg/kg), and maintained by continuous intravenous infusion of 

ketamine (2 mg/kg/h), xylazine (0.2 mg/kg/h), and midazolam (0.2 mg/kg/h). The analgesic 

buprenorphine (0.03 mg/kg) was administered by intramuscular injection immediately before 

the procedure. 

Pigs were intubated and mechanically ventilated with oxygen (fraction of inspired O2, 

28%). Central venous and arterial lines were inserted, and a single bolus of unfractionated 

heparin (300 IU/kg) was administered at the onset of the instrumentation. During the procedure, 

a continuous infusion of amiodarone (300 mg/h) was systematically used to avoid malignant 

ventricular arrhythmias. Amiodarone was initiated immediately after coronary artery occlusion. 

The mid-left anterior descending coronary artery (distal to the origin of the first diagonal 

branch) was occluded for 45 min with an angioplasty balloon inserted through percutaneous 

femoral access. After 45 min, the balloon was deflated, and blood flow restoration was 

documented by angiography. Animals were randomly allocated 1:1 to receive either the b3AR 

agonist (mirabegron, 10 µg/kg) or vehicle via marginal vein of the ear 5 min before reperfusion 

(i.e. 40 min after coronary artery occlusion). The treatment (mirabegron or vehicle) was 



6 
 

administered by operators blinded to the allocation. During the procedure, invasive 

hemodynamic measurements were obtained as detailed above. After the procedure, both 

veterinarians and technicians at the CNIC Comparative Medicine Unit took care of the recovery 

of the animals. 

CMR protocol 

CMR studies were performed 7 and 45 days after AMI to assess infarct size (% of LV) 

and LV function. On each CMR exam, pigs were anesthetized by intramuscular injection of 

ketamine, xylazine and midazolam as described above, and maintained by continuous 

intravenous infusion of midazolam. All studies were performed using a Philips Achieva 3T-Tx 

whole body scanner (Philips Medical Systems, Best, The Netherlands) equipped with a 32-

element cardiac phased-array surface coil. Images were acquired with the use of 

electrocardiogram gating by operators blinded to the treatment allocation. Segmented cine 

steady-state free precession (SSFP) was performed to acquire 15 contiguous short-axis slices 

covering the heart from the base to the apex to assess LV mass, LV volumes and ejection 

fraction with the following parameters: FOV of 280 x 280 mm; slice thickness of 6 mm without 

gap; TR 2.8 ms; TE 1.4 ms, flip angle 45; cardiac phases 25; voxel size 1.8 x 1.8 mm; 3 NEX. 

Edema imaging was performed using a T2-weighted, triple inversion-recovery fast spin-echo 

(T2W-STIR) sequence with the following parameters: FOV of 300 x 300; 15 short-axis slices 

with thickness of 6 mm and no gap; TR 2 heartbeats; TE 80 ms; voxel size 1.4 x 1.8 mm; STIR 

delay 210 ms;echo-train length 18; 2 NEX. T2W images were corrected by coil sensitivities 

using Constant LEvel AppeaRance (CLEAR) algorithm. To determine myocardial IS, late 

gadolinium enhancement imaging was performed 15 min after the administration of 0.2 

mmol/kg gadopentate dimeglumine using a T1 inversion-recovery spoiled turbo field echo (T1-

IR-TFE) sequence with the following parameters: FOV of 280 x 280 mm; 15 short axis slices 

with a thickness of 6 mm and no gap; TR 3.3 ms; TE 1.6 ms; voxel size 1.8 x 1.8 mm; inversion 

time was optimized to null normal myocardium; 2 NEX. 
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CMR data analysis 

All CMR images were assessed using dedicated software (QMassMRv.7.6, Medis, 

Leiden, The Netherlands). Images were evaluated by 2 experienced observers in CMR analysis, 

blinded to treatment allocation, following a well-established protocol as described 

previously[9]. Briefly, LV cardiac borders were traced in each cine image to obtain LV end-

diastolic mass, LV end-diastolic volume (LVEDV), end-systolic volume (LVESV) and LVEF. 

LV mass and volumes normalized to the body surface area were calculated using the modified 

Brody’s method[19]. The extent of edema, expressed as a percentage of LV mass, was defined 

after manually tracing the endocardial and epicardial contours of T2W-STIR short-axis images. 

IS, expressed as a percentage of LV mass, was defined according the extent of late gadolinium 

enhancement after manually tracing the endocardial and epicardial contours on T1-IR-TFE short 

axis images. Edema and IS were identified as hyperintense regions, defined as >50 % of the 

peak myocardial signal intensity (full width half maximum) with manual adjustment if required. 

When present, hypointense areas within the edematous or necrotic zone were included in the 

edematous or necrotic region for quantification purposes.   

Statistical analysis 

Continuous variables are expressed as mean ± standard deviation. Levene’s robust test 

was performed to check the equality of variances between groups. CMR outcomes were 

compared between treatment groups using the Student's t-test. A generalized mixed model was 

conducted for comparison of heart rate and mean arterial pressure among repeated measures at 

different time points. All pairwise comparisons were explored, adjusting p values for multiple 

comparisons using the Bonferroni method. A P value of less than 0.05 was considered 

statistically significant. STATA software, version 15.1 (Stata Corp, College Station, TX, USA) 

was used throughout.  
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Results 

Phase 1: Dose-response study 

To select the highest dose without a relevant (detrimental) hemodynamic effect (<10% 

change in mean systemic blood pressure or heart rate), a dose-response assessment was 

performed in anesthetized pigs using the following doses 5, 10, 50 and 500 µg/Kg. The effect of 

intravenous administration of mirabegron on relevant hemodynamic parameters is presented in 

Table 1. Overall, the two low doses (5 and 10 µg/Kg) had little impact on the hemodynamic 

performance, whilst the two high doses (50 and 500 µg/Kg) resulted in a substantial impact on 

both cardiac output and heart rate. Taking into account these results, a dose of 10 µg/Kg was 

chosen for subsequent experiments. 

Phase 2: Effect of mirabegron in IRI 

Study population  

Twenty-six pigs underwent AMI procedure. One AMI procedure failed, and 5 pigs died 

within the first week after AMI before day7 CMR (3 allocated to placebo and 2 allocated to 

mirabegron). Thus, a total of 20 pigs (n=10/group) underwent CMR at day 7 having the primary 

outcome measured and comprised the final study population. Two of these 20 pigs died between 

day 7 and 45, both belonging to the mirabegron group. During AMI procedure, there were no 

relevant differences in hemodynamic parameters between placebo pigs and those allocated to 

mirabegron (Table 2).  

CMR at day 7 

CMR results at day 7 after AMI by group allocation are detailed in Table 3. At this 

time-point, there were no significant differences in neither infarct size (35.0±2.0%vs. 

35.9±2.4% in mirabegron and placebo respectively, p=0.782) nor in LVEF (36.3±1.1%vs. 

34.6±1.9%, respectively; p=0.430) (Figure 1). Similarly, there were no differences in the 

extension of edema as measured by T2W-STIR between groups (38.0 ± 5.6 % of LV vs. 38.4 ± 

5.9 % of LV, in mirabegron and placebo respectively; p=0.884).  The presence of microvascular 
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obstruction was not different between groups (2.3 ± 1.6 g vs 2.1 ± 1.9 g, in mirabegron and 

placebo respectively; p=0.841). 

 

CMR at day 45 

Consistent results were obtained after 45 days of reperfusion (Table 4). No significant 

differences were observed between groups in neither IS (23.7±6.3% vs 25.2±4.5%, in 

mirabegron and placebo, respectively; p=0.581) nor in LVEF (33.1±5.7% vs. 30.0±7.0%, 

respectively; p=0.366) (Figure 2). No significant differences were observed in LV end-diastolic 

volume (189.6 ± 23.7 ml/m2 vs. 202.9 ± 43.4ml/m2 in mirabegron and placebo respectively; 

p=0.449) and end-systolic volume (127.9 ± 26.7ml/m2 vs. 143.9 ± 43.5 ml/m2 in mirabegron 

and placebo respectively; p=0.377). 

 

Discussion 

β3AR stimulation with mirabegron does not protect the myocardium against IRI in a 

swine model of AMI. To our knowledge, this is the first study demonstrating that the i.v. 

administration of mirabegron fails to confer cardioprotection in a large animal model of IRI. 

Given the previous demonstration of the infarct-limiting effects of other β3AR agonists [8, 9], 

our data suggest a non-class infarct limiting effect of β3AR agonism. 

There is a wealth of evidence demonstrating the cardioprotective effect afforded by 

β3AR agonists when administered during the first minutes of reperfusion [8, 9]. It has been 

suggested that this cardioprotective effect is provided (i) at the myocardial level by a delay in 

mPTP opening dependent on the Akt-NO signaling pathway; and (ii) at the endothelial level by 

the release of NO. These protective effects at the myocardial and endothelial level may be 

reinforced from other effects – i.e. paracrine effect of NO to improve LV relaxation and 

antioxidant effects of β3AR signaling, which may help to preserve microvasculature [7]. 

However, all this previous evidence was based on the β3AR agonist BRL-37344 [8, 9]. 
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Unexpectedly, the administration of mirabegron did not confer protection against IRI in our 

swine model of AMI. This seemingly contradictory results do not necessarily contravene 

previous reports and might be explained by several reasons. 

The most important difference with previous reports lies in the use of different drugs. 

Within high-affinity β3AR agonists, BRL37344 belongs to the phenylethanolamines class and 

mirabegron (YM178) belongs to the aryloxypropanolamines [12]. The latter has the advantage 

of being already approved for human use to treat hyperactive bladder syndrome as well as being 

available in oral tablets [14], which might be useful as a longer treatment to improve post-AMI 

LV remodeling and LVEF [20]. It is known that BRL37344 has a lower affinity for β3AR in 

comparison with mirabegron [21]. Similarly, BRL37344 has a slight effect in other βAR [22], 

which might justify the disagreement in our results. However, BRL37344 did not confer 

cardioprotection in β3AR KO mice [9], thus suggesting a minor role for other β adrenergic 

receptors. 

The second possibility justifying the failed study is the dose of the drug used in the IRI 

experiments. Given the lack of publications in this regard, we chose the mirabegron dose based 

on our hemodynamic assessment. Higher doses of mirabegron provided substantial change in 

cardiac output as well as transitorily reduction in systolic blood pressure, although we lack 

information regarding the hemodynamic response in the range of 10 to 50 µg/Kg, which might 

be of interest considering our results. Prior studies in animal models of cardiovascular disease 

have reported the use of either oral [12] or i.v. mirabegron [16, 23, 24], although the latter were 

performed mostly in rats. It might be possible that the appropriate dose was not used. Another 

explanation might be the already known interspecies differences in the cardiac effects of β3AR 

agonists [25] – i.e. mirabegron showed less cardiovascular effects in monkeys than in dogs at 

similar exposures [17], although little has been published before regarding the effect of β3AR 

agonism in pigs [9]. 

There is yet a third potential explanation. Although β3AR agonists have been 

demonstrated to protect the heart against IRI when administered either immediately before or at 
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the onset of reperfusion [8, 9], it might be possible that this single dose of mirabegron was not 

enough time “on board”. Recent experimental studies have demonstrated the importance of the 

contribution of ischemic-related injury on top of reperfusion-related injury [26–28]. Moreover, 

some therapies, such as metoprolol [29] and remote ischemic conditioning [30], have 

demonstrated to be more effective when applied long before reperfusion in the clinical setting. 

These recent findings place ischemic injury back into the focus of relevant targets for IS 

reduction and suggest that next cardioprotective therapies should be tested long before 

reperfusion and not only 5 min before its onset, as we did in the present study. 

There is yet hope for the translation of mirabegron in cardiovascular diseases. Despite 

the fact that we did not find significant differences on IS reduction and LVEF improvement 

after the use of mirabegron at the dose studied, further research testing the cardioprotective 

effect of mirabegron (or other β3AR agonists) at different doses and earlier in the course of 

ischemic time is needed in similar translational models to elucidate the potential applicability of 

this therapy in the clinical setting. Moreover, there might still be room for its translation in the 

failing heart in form of chronic treatment [11, 13, 20] – several clinical trials are currently 

recruiting patients to test the performance of mirabegron in both LV and RV failing hearts. 

There is a phase IIb, international (8 countries), placebo-controlled randomized trial 

(ISRCTN65055502) testing the effect of mirabegron to prevent or reverse the LV hypertrophic 

remodeling of patients with structural heart disease who are at risk of developing HF with 

preserved ejection fraction. The Beta3 Agonist Treatment in Chronic Pulmonary Hypertension 

Secondary to Heart Failure (SPHERE-HF, NCT02775539) is evaluating whether the use of oral 

mirabegron would improve surrogate endpoints in patients with pulmonary hypertension 

associated to heart failure. 

Limitations 

This study should be evaluated in the light of its limitations. First, although β3AR has 

been demonstrated to be present in the myocardium and endothelium of mammals[7, 17, 25], 

we did not provide evidence of their existence in our experimental model. Second, the effect of 
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mirabegron on other receptors (β1AR and β2AR) was not assessed in this study. Third, other 

non-pharmacological approaches might be used to confirm our findings, such as enhancing 

β3AR [13]. Further doses of mirabegron and different timings of administration should be tested 

to confirm that mirabegron has not the ability to be translated to AMI patients. Finally, we 

cannot ruled-out a bias in relation to the day selected for CMR imaging in the acute phase. In 

this regard, previous studies have suggested a rapid resorption of late gadolinium enhanced 

myocardium, as surrogate of IS, over the course of the first week after AMI [31–33]. 

Additionally, edema formation after IRI is very dynamic [18, 34]; and CMR estimates can vary 

according to the day of imaging or the use of cardioprotective therapies [32, 35]. However, 

given that all animals underwent the index CMR exam the same day post-IRI (i.e., day 7), 

which it is actually within the suggested time window for assessing imaging outcomes [32, 35], 

we think any potential bias would have affected all groups equally and thus did not have an 

impact on the results. 

Conclusions 

β3AR stimulation with the clinically approved mirabegron does not protect the 

myocardium against IRI in a swine model of AMI. Using cardiovascular magnetic resonance at 

days 7 and 45, no significant differences in neither infarct size nor in LVEF were observed 

between mirabegron (10 µg/kg) and placebo when administered 5 min before reperfusion. 

Taking into account previous evidence with BRL37344, these data points towards a non-class 

infarct limiting effect of β3AR agonists. 
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TABLES 

Table 1. Effect of intravenous administration of mirabegron on heart rate, mean systemic artery 

pressure, mean pulmonary artery pressure and cardiac output in anesthetized pigs for doses 5. 

10, 50 and 500 µg/Kg,  

 Min 1 Min 2 Min 3 Min 4 Min 5 Min 10 Min 15 Min 20 

HR         

5 µg/Kg 0.3 (0.5) 4.4 (0.8) 2.2 (0.8) 1.1 (0.8) -0.1 (1.7) 0.2 (1.2) 1.1 (1.6) 0.5 (1.8) 

10 µg/Kg 4.8 (1.0) 7.1 (1.5) 2.9 (3.1) 2.1 (2.8) 3.2 (2.0) 3.5 (1.3) 5.0 (2.1) 5.2 (2.4) 

50 µg/Kg 17.8(4.0) 14.4(5.8) 5.5 (3.3) 3.4 (3.0) 4.0 (1.9) 3.1 (1.4) 2.4 (1.7) 1.8 (1.7) 

500 µg/Kg 48.7 (5.3) 35.9(4.3) 24.5(4.7) 20.4(3.8) 20.8(4.1) 18.4(2.1) 19.8(1.7) 17.9(1.3) 

SAP         

5 µg/Kg -4.8 (0.6) -3.6 (0.5) -2.1 (0.8) -1.3 (1.3) -0.8 (1.9) -1.5 (1.8) -1.0 (2.2) -1.7 (2.8) 

10 µg/Kg -6.6 (1.4) -2.0 (0.9) -0.5 (1.4) -0.5 (1.2) -0.8 (1.3) -1.4 (1.3) -1.0 (1.6) -1.0 (1.9) 

50 µg/Kg -9.2 (2.5) -3.2 (1.7) -0.6 (1.6) 0.0 (1.5) -0.2 (1.2) -0.8 (1.0) -0.1 (1.5) 0.4 (1.3) 

500 µg/Kg -14.6(4.0) - 7.9(2.6) -2.9 (1.2) -3.7 (1.2) -4.0 (1.4) -3.1 (1.2) -5.0 (1.3) -4.9 (1.4) 

PAP         

5 µg/Kg -1.7 (2.5) -0.8 (2.4) -3.7 (2.6) -3.6 (4.1) -3.6 (4.1) -3.6 (3.5) 1.4 (4.7) -1.6 (3.4) 

10 µg/Kg 3.1 (2.0) 0.1 (1.6) -1.9 (1.9) -1.9 (1.9) -3.9 (1.6) -5.0 (1.9) -1.0 (1.9) -2.9 (1.8) 

50 µg/Kg 1.3 (2.5) -2.9 (3.4) -4.2 (3.0) -5.0 (2.6) -5.7 (2.9) -0.8 (2.9) 1.5 (3.6) 0.1 (3.4) 

500 µg/Kg -6.1 (3.6) -11.6(2.9) -13.0(0.7) -13.2(2.3) -13.6(2.2) -8.5 (1.7) -8.5 (1.7) -9.5 (1.6) 

CO         

5 µg/Kg - - - - 4.1 (2.5) 7.5 (2.0) - 4.7 (3.0) 

10 µg/Kg - - - - 8.6 (1.1) 6.5 (3.1) - 5.3 (3.6) 

50 µg/Kg - - - - 4.5 (3.0) 5.8 (1.7) - 3.0 (2.4) 

500 µg/Kg - - - - 9.6 (5.5) 12.5(5.7) - 13.1(3.1) 

 

Results are expressed as percentage of change with respect the baseline value before drug 

administration (SD in brackets) 

HR heart rate (bpm); SAP, mean systemic arterial pressure (mmHg); PAP, mean pulmonary artery 

pressure (mmHg); CO, cardiac output (L/min). 
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Table 2. Differences in hemodynamic parameters between groups during the administration of 

either placebo or mirabegron in the ongoing AMI  

 

 Mean systemic arterial 

pressure (mm Hg) 

Heart rate (bpm) 

Min Mirabegron Placebo Mirabegron Placebo 

40 a 65 (8) 70 (11) 80 (14) 97 (21) 

41 65 (9) 67 (10) 79 (13) 91 (19) 

42 63 (8) 65 (9) 79 (13) 92 (17) 

43 61 (8) 64 (8) 80 (14) 93 (15) 

44 64 (8) 68 (12) 83 (10) 95 (14) 

45 b 68 (11) 70 (11) 83 (17) 94 (15) 

 
a Just before mirabegron administration 
b Just before reperfusion 

 

Values are expressed as mean (SD). Comparisons between different time points within and 

between treatment groups were all non-significant (n=10/group). 
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Table 3. CMR results at day 7 

 

 Mirabegron (N=10) Placebo (N=10) p value 

LV mass (g/m2) 86.6 (14.0) 83.2 (7.8) 0.524 

LVEDV (ml/m2) 165.9 (3.9) 172.0 (23.8) 0.481 

LVESV (ml/m2) 105.7 (10.2) 113.3 (23.8) 0.370 

LVEF (%) 36.3 (3.3) 34.6 (5.7) 0.430 

Edema (g) 27.1 (6.1) 28.4 (6.8) 0.659 

Edema (%LV) 38.0 (5.6) 38.4 (5.9) 0.884 

IS (g) 24.2 (6.2) 25.2 (7.1) 0.763 

IS (%LV) 35.0 (6.0) 35.9 (7.1) 0.782 

MVO (g) 2.3 (1.6) 2.1 (1.9) 0.841 

LV mass and volumes are normalized by body surface area. 

LV, left ventricular; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular 

ejection fraction; LVESV, left ventricular end-systolic volume; IS, infarct size; MVO, 

microvascular obstruction 
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Table 4. CMR results at day 45 

 Mirabegron (N=8) Placebo (N=10) p value 

LV mass (g) 72.7 (8.0) 75.5 (10.7) 0.554 

LVEDV (ml/m2) 189.6 (23.7) 202.9 (43.4) 0.449 

LVESV (ml/m2) 127.9 (26.7) 143.9 (43.5) 0.377 

LVEF (%) 33.1 (5.7) 30.0 (7.0) 0.366 

IS (g) 18.1 (5.0) 21.6 (7.6) 0.300 

IS (%LV) 23.7 (6.3) 25.2 (4.5) 0.581 

LV mass and volumes are normalized by body surface area. 

 

LV, left ventricular; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular 

ejection fraction; LVESV, left ventricular end-systolic volume; IS, infarct size. 
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FIGURE LEGENDS 

 

Fig 1. Short-term cardioprotective effect in pigs subjected to ischemia/reperfusion injury after 

pre-reperfusion administration of the β3AR mirabegron: infarct size (a) and left ventricular 

ejection fraction (b) at day 7 

 

 

 For panel a: black lines represent mean and SEM for infarct size (%) and circles represent 

individual animal data. For panel b: bar graphs represent mean and SEM for left ventricular 

ejection fraction (%). LV, left ventricle; ns, non-significant. 
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Fig 2. Long-term cardioprotective effect in pigs subjected to ischemia/reperfusion injury after 

pre-reperfusion administration of the β3AR mirabegron: infarct size (a) and left ventricular 

ejection fraction (b) at day 45 

 

 

For panel a: black lines represent mean and SEM for infarct size (%) and circles represent 

individual animal data. For panel b: bar graphs represent mean and SEM for left ventricular 

ejection fraction (%). LV, left ventricle; ns, non-significant. 

 


