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Abstract

Extraordinary progress in the structure and immunobiology of the human respiratory syncytial 

virus glycoproteins has been accomplished during the last few years. Determination of the fusion 

(F) glycoprotein structure folded in either the prefusion or the postfusion conformation was an 

inspiring breakthrough not only to understand the structural changes associated with the 

membrane fusion process but additionally to appreciate the antigenic intricacies of the F molecule. 

Furthermore, these developments have opened new avenues for structure-based designs of 

promising hRSV vaccine candidates. Finally, recent advances in our knowledge of the attachment 

(G) glycoprotein and its interaction with cell-surface receptors have revitalized interest in this 

molecule as a vaccine, as well as its role in hRSV immunobiology.

Human respiratory syncytial virus (hRSV) was recently classified in the genus 

Orthopneumovirus of the newly created Pneumoviridae family within the order 

Mononegavirales, detached from the original Paramyxoviridae family [1]. hRSV is an 

enveloped virus with a genome made of a single-stranded RNA molecule of negative 

polarity and about 15.2 kb in length. Molecules of nucleoprotein (N) wrap around the entire 

length of this RNA to form a stable ribonucleoprotein (RNP) complex, which encodes 11 

proteins, three of which are membrane-bound glycoproteins (G, F and SH) (for a review, 

[2]). The G glycoprotein was originally described as the receptor-binding or attachment 

protein [3]. F was identified by Walsh and Hruska [4] as the fusion protein that fuses the 

viral and cell membranes enabling the virus RNP to reach the cell cytoplasm. Finally, SH 

was initially described as a viroporin—a class of small viral proteins that modify membrane 

permeability [5]—and was later found to form pentameric pore-like structures in the 

membrane that confer cation-selective channel-like activity, compatible with its initial 

designation as a viroporin [6].

It is widely accepted that protection against hRSV is conferred mainly by neutralizing 

antibodies. For instance, high levels of neutralizing antibodies correlate with protection of 

human adult volunteers to hRSV challenge [7], as well as a lower risk of hRSV infection in 
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children [8] and in the elderly [9]. Therefore, the surface glycoproteins, particularly F, have 

recently received much attention as targets of neutralizing and protective antibodies and as 

potential antigens to be included in a hRSV vaccine [10]. These aspects of hRSV 

vaccinology are the topic of this review.

Structure and function of the hRSV G glycoprotein

The G protein is synthesized as a polypeptide precursor of about 300 amino acids 

(depending on the viral strain) with a single hydrophobic domain (residues 38–63) near the 

N-terminus that acts as a combined signal and membrane anchor domain [11] (Fig. 1). This 

hydrophobic region targets the nascent chain, as it emerges from the ribosome, to the 

endoplasmic reticulum and ensures translocation of the polypeptide chain across the 

membrane while anchoring the G protein to the lipid bilayer. G has neither sequence nor 

structural homology with the attachment protein of viruses in the Paramyxoviridae family 

[11].

The G polypeptide precursor is extensively modified by the addition of both N- and O-linked 

oligosaccharides and is also palmitoylated at a single cysteine residue in its N-terminal 

cytoplasmic tail [12]. High-mannose N-linked glycans are co-translationally added to the G 

protein precursor, followed by the conversion of these sugars to the complex type and 

addition of O-linked glycans in the Golgi compartment. These modifications convert the 32 

kDa precursor into a mature protein of 80–90 kDa (estimated by SDS-PAGE) in most 

immortalized cell lines [13], whereas a 180 kDa form has been described in human airway 

epithelial (HAE) cultures [14] that is postulated to represent either a dimer of the 90 kDa G 

protein or the 90 kDa form with additional or more extensive O-linked carbohydrate chains.

The G protein ectodomain consists of two large heavily glycosylated “mucin-like” domains, 

rich in serine, threonine and proline residues (characteristic of mucins), connected by a short 

central region devoid of carbohydrates (Fig. 1) [15]. The sequence of the two mucin-like 

domains is extremely variable among viral strains [16] but they all have several potential 

sites for N-glycosylation and multiple serines and threonines that are predicted to be O-

glycosylated by the NetOGlyc software [17]. This sequence variability has been used in 

numerous studies of molecular epidemiology and evolution of hRSV [18]. Thus, hRSV 

strains have been classified into two genetic groups, A and B, that correlate with the 

antigenic groups, initially identified by reactivity with certain monoclonal antibodies 

(mAbs) [19;20]. Within each group numerous clades or genotypes have been identified. 

Viruses of different genotypes and even different antigenic groups frequently co-circulate in 

each yearly outbreak. The dominance of these genotypes changes in successive epidemics 

and replacement of certain genotypes by others has been noticed at the global level [21].

The central conserved region of hRSV G (aa 163–189) has four cysteines (residues 173, 176, 

182 and 186) that are conserved in all viral strains. Within this region there is a stretch of 13 

amino acids (164–176) that is strictly maintained in all strains while the remaining sequence 

of the central region is somewhat group-specific. Disulfide bridges are formed between 

Cys173 and Cys186, and between Cys176 and Cys182, resulting in a cystine noose motif 

which resembles the structure found in the 55 kDa tumour necrosis factor receptor [22;23]. 
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The Cys-rich motif is missing in the highly related G protein of human metapneumovirus 

(hMPV), which otherwise shares the overall amino acid composition and sequence 

variability of hRSV G [24;25]. The ectodomains of both hRSV and hMPV G are predicted 

to be disordered (except for the hRSV cystine noose), consistent with the high content of 

serine, threonine, and proline residues and extensive O-glycosylation [26].

The central region of hRSV G contains the CX3C motif (aa 182–186) that can bind to 

CX3CR1—the specific receptor of the fractalkine chemokine—and hence induce leukocyte 

chemotaxis [27]. Several authors have reported hRSV binding to differentiated HAE cells by 

the interaction of the G protein with CX3CR1 in the apical surface of ciliated cells [28–30]. 

Inhibition of CX3CR1 binding reduces but does not entirely suppress infection of HAE 

cultures, indicating that CX3CR1is an important but not the only hRSV receptor in these 

cells. It has been reported that hRSV uses cell surface proteoglycans for attachment to 

established cell lines [31–33] mainly by interactions of the G protein with 

glycosaminoglycans (GAGs) [34;35]. Whether proteoglycans may also act as an hRSV G 

receptor in HAE cells is still controversial [28;30].

In addition to the membrane bound form of hRSV G, infected cells also produce a soluble 

form of G (sG) [36] by internal initiation of translation at a second AUG codon (Met48) 

located in the middle of the transmembrane region and subsequent cleavage after residue 

Asn66 (Fig. 1) [37]. While sG is monomeric, membrane bound G is oligomeric (probably a 

tetramer) emphasizing the relevance of the transmembrane domain for oligomerization [38]. 

The actual role of sG in hRSV biology is not known, although it has been postulated to help 

evade the antibody-mediated restriction of replication by acting as an antigen decoy and 

through effects on Fc-receptor-bearing leukocytes [39].

Antigenicity and immunogenicity of the hRSV G glycoprotein

Three types of epitopes have been identified in the G protein by murine mAbs: i) conserved 
epitopes which are present in all viral strains and that map within the conserved 13 amino 

acid stretch of the unglycosylated central region, ii) group-specific epitopes that partially 

overlap with the conserved epitopes but are shared only by strains of the same antigenic 

group and iii) strain-specific epitopes that are present only in certain strains of the same 

antigenic group and have been mapped in the C-terminal hypervariable region of the G 

protein ectodomain (Fig. 1) [40]. These variable epitopes are influenced by cell-type-specific 

glycosylation [13].

The majority of murine mAbs specific for the G glycoprotein have minimal effects on virus 

infectivity in classical complement-independent neutralization assays performed with 

immortalized cell lines [41;42]. However, pools of antibodies binding to different epitopes of 

G showed a synergistic effect on this type of neutralization [43], suggestive of hRSV 

inhibition by steric hindrance.

Recent studies have demonstrated that 131-2G [41], a murine mAb which binds to an 

epitope located in the central region of hRSV G and that is conserved in all viral strains 

tested so far, reduces hRSV binding to CX3CR1 in HAE cell cultures [28;29]. Antibody 
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131-2G reduces several disease manifestations in hRSV challenged mice, including 

pulmonary inflammation [44] and mucus production [45]. Mice inoculated with G protein 

polypeptides or peptides spanning the central conserved region of G elicited antibodies that 

blocked the interaction of the G protein with CX3CR1 and had reduced pathogenesis 

mediated by hRSV infection [46]. Likewise, mice vaccinated with recombinant influenza 

virus carrying a chimeric HA protein containing the conserved domain of hRSV G [47] or 

nanoparticles carrying the CX3C motif of hRSV G [48] had reduced virus titers and 

pathology in the lungs after a hRSV challenge. These results extend those previously 

obtained with a BBG2Na vaccine that comprised residues 130 to 230 of hRSV G fused to 

the albumin-binding region of the streptococcal protein B [49]. This vaccine was tested in 

humans but these trials were halted after two individuals in a phase II trial developed type III 

hypersensitivity, likely attributable to the bacterial component. Nevertheless, the results cited 

in this paragraph unlock new possibilities for hRSV vaccine development based on the G 

glycoprotein.

Structure and function of the hRSV F glycoprotein

The F protein is a type I glycoprotein which shares structural motifs with the F proteins of 

other Pneumoviridae (e.g., hMPV) and Paramyxoviridae (e.g., parainfluenza virus type 5, 

PIV5) viruses, despite limited sequence identity, suggesting that they all function through 

similar mechanisms. The F glycoprotein is synthesized as an inactive precursor (F0) of 574 

amino acids that has three hydrophobic peptides (Fig. 2): i) the N-terminal signal peptide (aa 

1–21), which directs translocation of the nascent polypeptide to the lumen of the 

endoplasmic reticulum and is not present in the mature molecule, ii) the transmembrane 

region (aa 525–550) near the C-terminus, which anchors F to the cell and viral membranes, 

and iii) the so-called fusion peptide (aa 137–155), which inserts into the target cell 

membrane during the fusion process. F0 is post-translationally cleaved after two polybasic 

furin sites at residues 109 (cleavage site I) and 136 (cleavage site II), separated by 27 amino 

acids (pep27), to become fusion competent [50]. The double proteolytic cleavage is shared 

with the homologous F protein of bovine RSV but it is a unique feature among the 

Pneumoviridae and Paramyxoviridae F proteins, which are cleaved only once. Once 

cleavage of hRSV F is completed, the intervening pep27 is released from the mature protein 

[51] and two chains are generated (F2 N-terminal to F1) which remain covalently linked by 

two disulfide bridges (Cys70–Cys212 and Cys37–Cys439). The newly created N-terminus 

of the F1 chain contains the fusion peptide. There are two N-linked glycosylation sites in F2 

and one in F1, and these are conserved in all hRSV strains. The F1 chain has a central 

cysteine-rich region flanked by two heptad repeats: HRA is located C-terminal to the fusion 

peptide and HRB precedes the transmembrane region. The mature hRSV F glycoprotein is a 

homotrimer of F1+F2 subunits.

The main function of hRSV F is to promote fusion of the viral and cell membranes; 

however, there have been reports of spontaneous deletion mutants [52] and recombinant 

viruses [53] in which F is the only viral glycoprotein. These mutants replicate in established 

cell lines but not in HAE cultures [14] and are attenuated in animal models [54]. Therefore, 

at least in ΔG viruses, F has to assume the virus binding function of the G protein, in 

addition to its membrane fusion activity. Indeed, F has been found to bind proteoglycans 
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[55] and other cell-surface molecules, such as nucleolin [56], compatible with its role as a 

substitute attachment protein. However, whether wild-type virus requires F binding to cells 

for infectivity is still not entirely clear.

The relevance of the hRSV F double cleavage for membrane fusion is also uncertain. 

Grafting of the double cleavage site of hRSV F in Sendai virus F resulted in a dramatic 

increase of cell-cell fusion mediated by the chimeric protein in transfected cells, as well as a 

decrease in dependence of hemagglutinin-neuraminidase (HN) co-expression for cell-cell 

fusion [57]. Furthermore, replacement of Sendai virus F by the chimeric protein reduced 

virus thermostability and decreased dependence on HN binding to sialic acid for infection, 

mimicking the unique ability of hRSV to fuse and infect cells in the absence of a separate 

attachment protein [58]. Therefore, the presence of two cleavage sites in hRSV F seems to 

modulate its membrane fusion activity by still ill-defined mechanisms.

The F trimer is assembled in the virus particle in a metastable conformation, called pre-

fusion. During membrane fusion, F experiences a series of conformational changes that 

result in a highly stable structure, called post-fusion (see later). Important knowledge about 

these conformational changes has been recently gained by solving the atomic structures of 

soluble forms of hRSV F folded in either the prefusion or postfusion conformation [59–62], 

as shown in Fig. 2.

One of the main hurdles in these studies was the stabilization of a soluble form of hRSV F in 

its prefusion conformation. Initially, it was found that the expression of the F protein 

ectodomain led to formation of soluble trimers (sF) that retained epitopes recognized by 

certain neutralizing mAbs [63]. Partial deletion of the fusion peptide prevented aggregation 

of sF after cleavage [64] and allowed its crystallization in the absence of detergents [59;60]. 

The X-ray structures determined from these crystals demonstrated that sF was folded in the 

postfusion conformation, indicating that the F ectodomain assembles spontaneously into the 

highly stable postfusion form when expressed without the transmembrane region. Of note, 

the full-length F also refolds into the postfusion form if extracted with detergents from the 

cell or viral membranes. Therefore, a central challenge was to obtain a soluble hRSV F 

ectodomain stabilized in the prefusion form, amenable to crystallization. This was initially 

achieved by co-expression of the hRSV F ectodomain in complex with the Fab fragment of a 

neutralizing mAb (D25) which did not bind to postfusion F and hence was presumably 

specific for the prefusion conformation [61]. Indeed, the structure of F in that complex 

differed substantially from the previously described postfusion hRSV F and resembled the 

structure of the paramyxovirus PIV5 prefusion F, reported by Yin et al., [65]. Based on that 

structure, several mutants of the hRSV F ectodomain were made to stabilize it in the 

prefusion conformation in the absence of antibodies [62]. One of the most stable mutants 

(DS-Cav1) had two serines (155 and 290) substituted by cysteines to create an intrasubunit 

disulfide bond, two cavity filling mutations (S190F and V207L) in the F1 chain to help 

stabilization, and a foldon trimerization domain at the C-terminus [62]. DS-Cav1 has been 

extensively used in several studies but other mutants, stabilized in the prefusion 

conformation by alternative strategies (SC-TM), have been obtained with enhanced stability 

properties [66].
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Fig. 2 shows a comparison of the hRSV F prefusion and postfusion structures. Most of the 

secondary and tertiary structure is preserved in the pre- and postfusion forms. In contrast, the 

N- and C-termini of the F1 chain undergo substantial conformational changes. During the 

fusion process, the fusion peptide and the first five secondary-structure elements at the N-

terminus of F1 rearrange and fuse with the α5 helix to form an extended helix of >100 Å in 

length. Near the C-terminus of F1, parallel strand β22 dissociates as the C-terminal helix 

rearranges to form the outer helix of the postfusion six-helix bundle (6HB). Similar 

rearrangements had been inferred by comparison of the related prefusion PIV5 and 

postfusion PIV3 F structures [67,68], suggesting that all these viruses share a similar 

membrane fusion mechanism.

Fig. 3 illustrates the model of membrane fusion mediated by hRSV F, taken from the initial 

model proposed for PIV5 [65]. After binding of the incoming virus to the cell surface, 

prefusion F is activated by an ill-defined process which apparently does not require the 

attachment G glycoprotein, a major difference with the F protein of the Paramyxoviridae. 

After activation, F initiates a series of conformational changes which probably involve 

separation of the HRB helices and formation of the long HRA α-helix, as mentioned above. 

These changes relocate the fusion peptide—which is buried deep inside the prefusion 

globular head—towards the end of the newly formed helix, which probably assembles into a 

coiled-coil trimer of HRA sequences. Since the fusion peptide is hydrophobic, it avoids the 

hydrophilic environment by inserting into the outer layer of the cell membrane, leading to 

formation of the so-called pre-hairpin intermediate. At this stage, the cell and viral 

membranes are connected by sequences of the F1 subunit which lie between the fusion 

peptide and the transmembrane region, respectively. This unstable pre-hairpin intermediate 

refolds by zipping the HRB helix towards the HRA coiled-coil, bringing the two membranes 

into proximity. Finally, the fusion peptide and the transmembrane domain of F end up in the 

same membrane after formation of the 6HB, in which an internal core of three HRA α-

helices is surrounded by three antiparallel HRB helices. Completion of the 6HB assembly 

leads to exchange of lipids between the two membranes, formation of the initial fusion and 

expansion of this pore to complete membrane fusion.

Antigenicity and immunogenicity of the hRSV F glycoprotein

The first panels of mAbs raised against hRSV F were obtained from immunized mice using 

the hybridoma technology [41;69;70]. These antibodies identified several epitopes that were 

eventually mapped in the F protein primary structure by isolation and characterization of 

escape mutants [69;71;72] or by reactivity of antibodies with peptides or F protein fragments 

[73;74]. Binding of at least some of these antibodies to F could be competed with human 

sera, indicating that the matching epitopes were relevant in a natural infection. However, the 

F proteins used in these studies were likely folded in the postfusion conformation since, as 

noted before, F folds spontaneously into this structure when it is either expressed as a 

soluble ectodomain or detergent-extracted from cell membranes. It was thus relatively 

unsurprising that as reported [75;76] most of the neutralizing activity present in human 

immunoglobulin preparations could not be depleted by adsorption to immobilized 

preparations of postfusion F. It was therefore concluded that most natural human 

neutralizing antibodies recognize epitopes preserved only in the prefusion conformation of 
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hRSV F. This was further corroborated by the isolation of mAbs from immortalized human 

lymphocytes [77] that were specific for prefusion F. These mAbs had higher neutralizing 

potency [61] than those originally described that reacted with both prefusion and postfusion 

F [76].

Other human neutralizing antibodies have been recently reported that either recognize 

neutralizing epitopes exclusive to prefusion F, such as AM14 [78], or show preferential 

binding to prefusion over postfusion F, such as MPE8 [79]. Interestingly, MPE8 cross-

neutralizes not only hRSV but additionally three other Pneumoviridae: bovine RSV, hMPV 

and pneumonia virus of mice (PVM). Another mAb, 54G10, raised against hMPV F has also 

shown cross-neutralization with hRSV [80].

Fig. 4 shows the location of antibody epitopes and antigenic sites identified so far in the 

prefusion and postfusion conformations of hRSV F. Some of these sites are found only in the 

prefusion (e.g., site Ø) or postfusion (e.g., site 6HB) conformation, while others are present 

in both conformations (e.g., site II) since, as mentioned above, an extensive area of the 

protein surface is shared by the prefusion and postfusion conformations (Fig. 2) [61]. In 

general, the antibodies that bind preferentially to prefusion F are better neutralizers than 

those that recognize epitopes shared by prefusion and postfusion F. As expected, antibodies 

which recognize epitopes specific to postfusion F are non-neutralizing.

It is assumed but not formally demonstrated that neutralizing antibodies bind to prefusion F 

and block the initiation of the conformational changes that lead to membrane fusion [81]. 

Concurring with the neutralizing potency shown by the different mAbs, a detailed analysis 

of the antibodies present in individual human sera demonstrated that the majority of their 

neutralizing activity was due to prefusion-specific antibodies directed against antigenic site 

Ø [82].

Several studies have compared the immunogenic and protective efficacy of purified 

prefusion and postfusion soluble F in animal models. For instance, the prefusion stabilized 

DS-Cav1 protein was found to induce ten times higher levels of neutralizing antibodies in 

mice and rhesus macaques than postfusion F [62]. Similarly, the alternatively stabilized 

prefusion SC-TM protein also elicited 10–20-fold higher levels of neutralizing antibodies 

than postfusion F in cotton rats that were additionally shown to be protected against a hRSV 

challenge [66]. A recent comparison of prefusion, postfusion and a monomeric form of F 

that shares antigenic properties with prefusion F [83] also demonstrated the superiority of 

prefusion F in inducing neutralizing antibodies and protection against a hRSV challenge in 

mice without perceptible pathology [84]. However, protection against a hRSV challenge has 

also been achieved with postfusion F, likely by induction of neutralizing antibodies that 

recognize epitopes shared with prefusion F [59;85]. It is worth noting that postfusion F is a 

highly stable molecule, a valuable characteristic from the point-of-view of vaccine 

production and distribution.

Stabilized full-length prefusion hRSV F has also been incorporated as an extra gene into 

PIV3 recombinants [86]. These viruses showed an enhanced neutralizing antibody response 

against hRSV compared with PIV3 recombinants expressing a soluble postfusion form of 
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hRSV F. Prefusion stabilized hRSV F has also been expressed at the surface of virus-like 

particles (VLPs) made in cells that expressed the nucleoprotein (NP) and the matrix (M) 

protein of Newcastle disease virus (NDV). The purified VLPs were inoculated i.m. in either 

mice [87] or cotton rats [88], and these animals elicited a serum neutralizing antibody 

response and were protected against an hRSV challenge. Thus, immunization with pre-

fusion F, either as a subunit vaccine or incorporated to recombinant viruses or VLPs, seems 

to be a promising approach for hRSV vaccine development.

Expression of individual F protein epitopes grafted onto different protein scaffolds has also 

been reported, including the helix-loop-helix motif of antigenic site II [89;90]. Structural 

analysis of these proteins indicated that they could faithfully reproduce the structural and 

antigenic features of hRSV F site II. Some of these constructs were able to induce strong 

neutralizing antibody responses in macaques but only after several immunizations, 

suggesting that further optimizations of these scaffolds are required before being considered 

a practical approach to an hRSV vaccine. These scaffolds do, however, represent an 

interesting alternative for obtaining simplified vaccines with improved production and 

stability.

In summary, advances in understanding the structure of hRSV glycoproteins, especially the 

F glycoprotein, have brought new stimulus for development of long-awaited hRSV vaccines 

which will help to control one of the most important causes of infant hospitalization [91] and 

one of the leading global causes of infant mortality [92].
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Figure 1. Human respiratory syncytial virus G glycoprotein
The full length, 298 amino acid membrane-anchored G protein (Gm) and the 233 amino acid 

soluble G protein (Gs) are shown (Long strain). Hydrophobic regions are denoted by thick 

lines. Gs is formed by alternative translation initiation at M48, followed by cleavage after 

residue 65. Inverted triangles represent N-linked glycosylation sites and vertical lines 

indicate O-linked glycosylation sites. Cysteine residues overlapping the central conserved 

domain are represented by solid circles. The lower part of the figure depicts a model of the 

3-dimensional structure of Gm. While Gm is probably tetrameric [38], a dimer is shown for 

simplicity. The mucin-like regions are depicted as extended rod-like structures due to the 

presence of multiple O-linked sugars that have a tendency to stretch the polypeptide 

backbone [93] The second hypervariable region is externally located in the model to denote 

that it harbors multiple epitopes and it is shown as two halves joined by a protease 

susceptible site [94]. Antibody epitopes and the glycosaminoglycan (GAG) binding site are 

indicated by arrows. Figure provided by Alfonsina Trento.
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Figure 2. Human respiratory syncytial virus F glycoprotein
(a) Diagram of the F protein precursor denoting the signal peptide (SP), the fusion peptide 

(FP) and the transmembrane region (TM), as well as cleavage sites I and II and the cysteine 

residues (black dots). (b) Structure of the F protein trimer folded in the prefusion (left) and 

postfusion (right) conformation. One protomer is shown as ribbons and colored blue (F2 

chain), green (F1 chain) and red (fusion peptide). Molecular surfaces are shown for the other 

two F protomers, colored grey and white. (c) A single hRSV F protomer is displayed as 

ribbon, folded in the prefusion (left) and postfusion (right) conformation. The same colors 

are used for the secondary structure elements (indicated in the prefusion protomer) in the 

two conformations. Note that the structure colored grey is essentially unchanged in the 

prefusion and postfusion conformation.
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Figure 3. Model of membrane fusion mediated by the hRSV F glycoprotein
(a) A single prefusion F protein trimer is depicted inserted into the viral membrane through a 

HRB stalk (green). (b) Upon activation, the short α-helices of HRA (blue) refold into a long 

trimeric coiled-coil (blue) and the fusion peptide of each subunit (red) is inserted into the 

target membrane, forming the so-called pre-hairpin intermediate. (c) Collapse of this 

unstable intermediate approaches the two membranes. (d) Assembly of the six-helix-bundle 

(6-HB), formed by a core of three HRA α-helices surrounded by three antiparallel HRB α-

helices, results in formation of the fusion pore.
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Figure 4. Antigenic sites of hRSV F glycoprotein
The location of the different antigenic sites is shown in both the prefusion (a) and postfusion 

(b) conformation of hRSV F. Antigenic site III is delineated by a circle which includes 

residues identified by mutagenesis to be essential for binding of mAb MPE8 [79], since no 

other structural information is available yet for this site.
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