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Abstract

Molecular epidemiology studies have provided convincing evidence of antigenic and sequence 

variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been 

classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. 

Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two 

hypervariable segments of the G protein gene. Sequences of the G gene have been used for 

phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with 

both local and global replacement of dominant viruses with time. Although data are still limited, 

there is evidence that strain variation may contribute to differences in pathogenicity. In addition, 

there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) 

driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza 

viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly 

conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It 

is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the 

duration and specificities of the human antibody response against RSV antigens. Since there are 

some data supporting a group- (or clade-) specific antibody response after a primary infection in 

humans, it may be wise to consider the incorporation of strains representative of groups A and B 

(or their antigens) in future RSV vaccine development.

1. RSV antigenic groups and clades

An early study of the seroepidemiology of RSV in Sendai, Japan found that patient sera did 

not differ in neutralization of a small number of homologous and heterologous RSV strains, 

as measured by reduction in tissue culture infectious dose (TCID50) in HEp-2 cells (Suto et 

al. 1965). Using a methylcellulose overlay plaque assay developed in 1966, sera from 

infected ferrets detected limited strain antigenic variability, reflected in slightly different 

plaque reduction neutralization (PRN) titers for homologous (Long) versus heterologous 

(CH18537) strains (Coates et al. 1966). However, it was also found in those early days that 

children could be naturally infected in consecutive years with RSV strains indistinguishable 
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by cross-PRN, and adults were naturally re-infected despite pre-existing neutralizing 

antibodies (Abs) (Beem 1967).

Despite the previous comments, antigenic groups of RSV strains were definitively identified 

by enzyme-linked immunosorbent assay (ELISA) using a panel of ten monoclonal Abs 

(mAbs) obtained from mice immunized with different RSV strains, such as A2, Long, and 

CH18537 (Anderson et al. 1985). In a separate study from the same year, RSV isolates from 

West Virginia were probed with a panel of mAbs generated against RSV Long (Mufson et 

al. 1985). RSV proteins recognized by the mAbs were identified by 

radioimmunoprecipitation assay (RIPA) and SDS-PAGE of 35S-labelled infected cell 

extracts. When these mAbs were tested against RSV field isolates by RIPA, it was revealed 

that RSV separated into two antigenic groups, A and B, based on eight epitope differences in 

the attachment glycoprotein (G), one epitope difference in the fusion glycoprotein (F), and 

one epitope difference in the nucleoprotein (N). The antigenic groups correlated with genetic 

differences identified by sequencing cDNA clones of the G genes of RSV A2 (A group), 

Long (A group), and CH18537 (B group) strains. Thus, while the deduced G protein 

sequences of A2 and Long strains shared 94% amino acid identity, those of CH18537 and 

A2 strains shared only 53% amino acid identity, with the majority of the diversity residing in 

the predicted extracellular domain (Johnson et al. 1987b). The classification of RSV isolates 

into A and B antigenic groups is now more often done via sequencing of variable region(s) 

of the G extracellular domain, rather than by mAb reactivity. The RSV A and B group 

designation is also referred to as antigenic “subgroups” in the literature, group A being more 

prevalent than group B (Hall et al. 1990;Matheson et al. 2006).

Sequence-based molecular epidemiology of RSV led to the identification of genetically 

distinct, co-circulating genotypic lineages. Evidence of RSV lineages within group A was 

revealed in isolates from Birmingham, U.K. (1989) using partial sequences of the small 

hydrophobic (SH) gene and restriction patterns of RSV nucleoprotein (N) gene PCR 

amplicons (Cane and Pringle 1991). RSV G gene sequences from 27 group A isolates from 

Montevideo, Uruguay and Madrid, Spain (1987 to 1993) were aligned with those of A2, 

Long, and six isolates from Birmingham, UK to analyze the phylogenic relatedness of group 

A strains, and distinct lineages were evident (Garcia et al. 1994). Similarly, lineages were 

observed by analyzing sequences of the two variable domains of the G gene from 48 group 

A RSV isolates collected from 1956 to 1993 in the US, Australia, UK, Norway, Sweden, and 

Finland (Cane and Pringle 1995). Both studies also found local co-circulation of group A 

lineages and a high ratio of nonsynonymous to synonymous (dN/dS) mutations in the C-

terminal variable region of G, suggesting positive selection. Furthermore, both studies 

probed isolates with panels of mAbs to the G protein and found that the strength of reactivity 

roughly paralleled the position on the phylogenetic dendrogram, consistent with contribution 

of immune selection to RSV G variability (Cane and Pringle 1995; Garcia et al. 1994).

A more detailed picture of RSV genetic lineages emerged with additional sequences. It was 

determined that the C-terminal 270 nt of the G gene can serve as a proxy for full length G 

gene variability (Peret et al. 1998). Phylogenetic analysis of G sequences from 204 RSV 

isolates collected in Rochester, New York from winter 1990/1991 to winter 1994/1995 

revealed a number of genetically distinct clusters of genotypes (clades) within A and B 
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groups of RSV (Peret et al. 1998). These clades were designated GA1 to GA5 for group A 

and GB1 to GB4 for group B. This work provided a clade nomenclature and framework that 

was consistent with earlier observations of distinct RSV lineages and aided ongoing 

investigations of RSV molecular epidemiology. Subsequent RSV studies with large 

sequence data sets of RSV isolates over time from around the globe confirmed these co-

circulating clades and identified additional clades (Gaunt et al. 2011;Matheson et al. 

2006;Reiche and Schweiger 2009;Shobugawa et al. 2009;Venter et al. 2001;Zlateva et al. 

2007;Botosso et al. 2009). Genetic relatedness of RSV group A strains is depicted in Figure 

1 by a phylogenetic tree composited from multiple studies, showing clades and 

representative isolates. Since the late 1990s, the GA2 and GA5 clades have dominated 

among group A RSV clades, with season-to-season fluctuation in relative rate of isolation. 

Group B RSV clades will be discussed in more detail below. In general, there is greater 

diversity between group A clades than there is between group B clades.

2. Temporal and geographical distribution of RSV strains

Initial analysis of multi-sequence alignments of RSV G gene sequences showed clustering of 

strains temporally and not geographically. Phylogenetically related RSV strains could be 

found at similar times in different continents, whereas isolates collected in the same place 

from the same epidemic may show greater diversity (Garcia et al. 1994). Additional 

evidence for temporal and not geographic clustering came from a study comparing 106 

group A and 38 group B RSV isolates from New Zealand (collected 1967–2004) with 

published isolates from around the world. The New Zealand isolates did not cluster with 

each other, and RSV isolates clustered by clade, not country (Matheson et al. 2006). 

However, despite data on wide geographic dissemination of RSV strains, community-based 

transmission likely plays a role in RSV epidemiology. RSV isolates were collected from the 

1994–1995 RSV season in the following cities, states/province: Birmingham, Alabama, 

Rochester, New York, Houston, Texas, St. Louis, Missouri, and Winnipeg, Mannitoba (Peret 

et al. 2000). The GA1 clade was most prevalent in Birmingham, Rochester, and St. Louis, 

whereas the GA5 clade was dominant in Houston, and the GA5 and GA7 clades co-

dominated that season in Winnipeg. RSV isolates from Japan generally clustered with 

known clades, but some were genotypically unique, suggesting a role for geographic 

clustering and community-based spread (Kuroiwa et al. 2005).

One way to gauge community-specific RSV distribution is to compare RSV studies 

reporting RSV isolates from different locations spanning the same time frame. Table 1 

compares the prevalence of RSV group A and group B as well as the prevalence of the 

dominant group A clades (GA2, GA5 and GA7) over time in different regions. Dominant 

group B clades were omitted in Table 1 because their classification is less consistent. Table I 

shows some patterns of widespread RSV distribution. For example, the relative A to B and 

relative GA2 to GA5 rates are roughly similar in Belgium, Germany, and Buenos Aries over 

three RSV seasons, 1998-99, 1999–00, 2000–01 (Table 1). Yet, site-specific group and clade 

restrictions are also evident. For example, Belgium and Germany differ in whether A or B is 

more prevalent in 3 of the 8 overlapping seasons (Table 1). Also, GA5 was the dominant 

group A clade in Belgium, Germany, and Japan in the 2003–04 season. However, GA2 was 

dominant the next season in Belgium and Japan, whereas GA5 remained dominant in 
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Germany (Table 1). In tropical and subtropical regions, the relative prevalence of A and B 

differed between Buenos Aires and Kenya in two out of three overlapping seasons (Table 1). 

RSV seasonality in tropical regions is distinct, and epidemics occur during the rainy season 

from July to November, with a biennial pattern of low and high incidence seasons, as 

observed in Cambodia (Arnott et al. 2011). In Cambodia and China, the dominance of group 

A or group B in a particular season was strong (Table 1). In summary, factors determining 

RSV group and clade compositions of epidemics are complex. Region-specific factors play a 

role, and, as discussed in more detail below, specific genotypes can also spread globally.

Although RSV groups and clades co-circulate and can appear in successive years, year-to-

year changes in the predominance of group A and group B and year-to-year changes in the 

predominance of clades were observed in a given location (Peret et al. 1998). Subsequent 

studies confirmed that clades co-circulate locally and alternate in predominance over time, 

potentially due to immune selection but without evidence of progressive evolution as defined 

by new strain emergence (Botosso et al. 2009; Gaunt et al. 2011; Matheson et al. 2006; 

Reiche and Schweiger 2009; Venter et al. 2001). Two key questions about the temporal 

distribution of RSV strains are: i) what drives season-to-season changes in clade 

predominance? and ii) do RSV clades impact natural infection and re-infection by, for 

example, providing some degree of immune evasion? A recurring hypothesis has been that 

alternating clade prevalence is a result of short-lived strain- or clade-specific herd immunity 

that favors circulation of a heterologous clade. Although it has yet to be shown definitively, 

there are published data consistent with the hypothesis of selection by herd immunity. Thus, 

several of the amino acid residues in the C-terminal hypervariable region of the G protein 

identified as having a high dN/dS ratio map within known Ab epitopes (Botosso et al. 2009; 

Garcia et al. 1994). Furthermore, a number of positively selected amino acid sites in the C-

terminus of G show a reversion (“flip-flop”) pattern of evolution, consistent with rising and 

waning strain-specific immunity (Botosso et al. 2009). The infant serum Ab response to 

primary RSV infection contains clade-specific Abs, as measured by ELISA using plates 

coated with polypeptides corresponding to the C-terminus of G (Scott et al. 2007). More 

recently, the RSV group and clade of infecting and reinfecting strains was identified in a 

birth cohort in Kenya. Excluding 7 reinfections that occurred during the same epidemic, 

there were 46 reinfections documented (Agoti et al. 2012). Twenty eight (61%) of those 

reinfections were group heterologous (A then B, or B then A). Among the 46 reinfections, 

there were only six instances where group A infection was followed by group A in a 

subsequent season. Of those six, four were heterologous for GA2/GA5 clade. Although the 

numbers are small, the authors state that the majority of reinfections are heterologous at the 

group or clade level (Agoti et al. 2012). It would be more compelling if higher rates of 

heterologous clade reinfection could be documented when the re-infecting clade is 

subdominant.

A better understanding of the potential for global spread of RSV strains has been facilitated 

by the discovery, in 1999, of a novel group B RSV genotype. It was isolated for the first time 

in Buenos Aires and contained a 60 nt duplicated region in the C-terminal one-third of G, 

and the clade was named BA (Trento et al. 2003). These initial BA isolates had an exact 60 

nt duplication, resulting in two tandem sequences of TERDTSTSQSTVLDTTTSKH from 

amino acids 240 to 280 in G (Trento et al. 2003). This insertion was then used as a “tag” to 
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analyze the global distribution and evolution of a new RSV genotype since its initial 

emergence (Trento et al. 2006;Trento et al. 2010). The BA clade rapidly disseminated 

worldwide and became dominant, and these findings have been confirmed by a number of 

RSV molecular epidemiology studies with relatively large data sets (Baek et al. 2012;Gaunt 

et al. 2011;Zhang et al. 2007;Botosso et al. 2009). The BA clade continued to evolve, the 

two exact 60 nt repeats diverged slightly, and a new BA-IV lineage essentially replaced all 

other group B RSV G strains. The biological significance of the duplicated region in BA G 

is not known.

Besides evolutionary studies, analysis of sequence variation in the G gene may have other 

practical applications as, for instance tracing the origin of infecting viruses during outbreaks 

in hospitalized patients (Mazzulli et al. 1999;Taylor et al. 2001).

3. Clinical differences between RSV strains

Early work showed that group A RSV is associated with slightly greater clinical severity 

than group B RSV (Hall et al. 1990). RSV disease severity was correlated with RSV clades 

in small cohorts, but these studies are not definitive because clade GA2 was found to be less 

pathogenic in one study and more pathogenic in others (Gilca et al. 2006;Martinello et al. 

2002). Thus, the role of RSV strain differences in disease remains to be elucidated.

4. Phenotypic Differences between RSV strains in vitro and in animal 

models

Small changes in viral gene sequences may have a large impact on pathogenesis. For 

instance, the elevated virulence of 1918 and avian influenza strains hinges on few amino 

acids differences (Conenello et al. 2007;Tumpey et al. 2005). Passage of viruses in animal 

hosts can lead to adaptation. The RSV Long strain was adapted to mice (line 19) by serial 

intracranial inoculation, resulting in higher virus replication presumably due to mutations 

that have not been characterized (Cavallaro and Maassab 1966). Infection of BALB/c mice 

with the laboratory RSV strains A2 or Long results in a predominant TH1-type antiviral 

response (Moore and Peebles, Jr. 2006). In contrast, the line 19 strain of RSV induces a TH2 

type and IL-13-dependent airway hyperreactivity (AHR) and pulmonary mucus in BALB/c 

mice (Lukacs et al. 2006). The F protein of the line 19 RSV strain has a unique sequence 

and is a factor that can induce pulmonary IL-13 and mucin expression in RSV infection 

(Moore et al. 2009). In addition, six RSV isolates have been screened for lung IL-13 levels 

and airway mucin expression in BALB/c mice. Three of these isolates induced lung IL-13 

and gob-5 (a marker of mucin) expression, and were found to be differentially mucogenic in 

BALB/c mice (Stokes et al. 2011). RSV clinical isolates also infect the airway epithelium of 

mice to a greater extent than the laboratory adapted A2 strain (Stokes et al. 2011). In 

differentiated primary pediatric airway epithelial cells cultured at air-liquid interface, a RSV 

clinical isolate exhibited enhanced infectivity (but not virus yield) and induced greater 

mucus production than the laboratory A2 strain (Villenave et al. 2012). The molecular bases 

for these strain-specific phenotypes are largely unknown.
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5. Protective immunity

Animal and human studies have provided a wealth of evidence indicating that protection 

against RSV infection is afforded mainly by neutralizing antibodies. In early experiments 

(Prince et al. 1983), it was found that cotton rats infected with RSV developed complete 

resistance to pulmonary reinfection which lasted at least 18 months. Adaptive transfer 

studies with the convalescence blood showed that serum antibody, but not circulating 

lymphocytes, conferred resistance. Immune pregnant cotton rat females transmitted 

protective antibodies to their young mainly through colostrum and milk (Prince et al. 1983). 

Similar findings were observed in pregnant ferrets (Prince and Porter 1975) and guinea pigs 

(Buraphacheep and Sullender 1997). Human convalescent serum and human 

immunoglobulin (Ig) preparations were also found to confer pulmonary protection against 

RSV in the cotton rats. Serum neutralizating antibody titres of 1:380 or higher were required 

for complete protection in the lungs whereas about 10 fold higher titres were required for 

protection in the nose (Prince et al. 1985). Therapeutic administration of neutralizing Abs 

reduced significantly the level of RSV replication in the lungs of cotton rats and owl 

monkeys but showed only a slight trend of beneficial effects in a limited number of RSV 

infected children (Hemming and Prince 1990). In addition to polyclonal antibodies, 

administration of certain monoclonal antibodies (mAbs) directed against either G or F 

glycoproteins protected the lungs of mice (Taylor et al. 1984) and cotton rats (Walsh et al. 

1984) against a RSV challenge. In one study, it was found that passive protection of mice 

afforded by a non-neutralizing mAb directed against the G glycoprotein was dependent on 

both the Fc fragment of the antibody and the host complement (Corbeil et al. 1996), 

explaining the lack of an strict correlation between in vitro neutralization in the absence of 

complement and in vivo protection (Taylor et al. 1984;Walsh et al. 1984).

In humans, protection of adult volunteers to an RSV challenge was correlated with high 

titres of preexisting serum neutralizing antibodies (Hall et al. 1991). Additionally, an inverse 

correlation was observed between high titres of RSV-neutralizing serum antibodies and risk 

of infection in children (Glezen et al. 1986). However, whereas in animal models the 

quantitative aspects of passive protection to RSV infection by neutralizing antibodies is well 

established, the situation in human is less certain. For instance, contradicting results were 

reported by the same group, about correlation (Falsey and Walsh 1998) or lack of correlation 

(Falsey and Walsh 1992) between neutralizing antibody titers and risk of RSV infection in 

the elderly. Nevertheless, the consensus inferred from the majority of data is that 

neutralizing antibodies protect against RSV infection and particularly against RSV-

associated pathology. Perhaps the best evidence for this assertion was provided by the 

clinical studies carried out with an Ig preparation (RS-IVIG, RespigamTM), selected for high 

titers of RSV-neutralizing antibodies which was administered prophylactically to high risk 

infants (Groothuis et al. 1993). The beneficial effect of RS-IVIG was noticed in the 

reduction of hospitalizations (55%) and days of intensive care (97%) rather than frequency 

of RSV infections. These studies led to licensing of Respigam in 1996 for prophylaxis of 

RSV infections in high-risk infants. Respigam was replaced in 1998 by a humanized 

neutralizing mAb (MEDI-493, palivizumab) directed against the RSV F glycoprotein 
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(Beeler and Van Wyke 1989) that showed similar efficacy but it was easier to administer 

than Respigam.

Despite the beneficial effects of antibodies in protection against RSV, some caution is 

needed because:

1. Passive serum Abs have been shown to inhibit the antibody responses to F and G 

glycoproteins expressed by recombinant vaccinia viruses (Murphy et al. 1988) or 

administered as purified antigens adjuvanted with alum (Murphy et al. 1991); 

however, they did not suppress the T-cell response nor the priming for a strong 

secondary antibody response (Fisher et al. 1999;Crowe, Jr. et al. 2001). Therefore, a 

well-balanced dose of prophylactic neutralizing antibodies may be required to 

avoid interference with the host immune response to either RSV infection or RSV 

vaccination.

2. Weakly neutralizing Abs may have detrimental effects that contribute to the 

enhanced respiratory disease observed in seronegative children that were vaccinated 

in the 1960’s with a formalin inactivated RSV preparation (Kim et al. 1969). It has 

been shown that antibodies may lead to formation of immune complexes that 

correlate with enhanced pathology in mice after an RSV challenge. Immune 

complex activation of complement was also observed in post-mortem lung sections 

from children with enhanced RSV disease (Polack et al. 2002). Non-replicating 

RSV vaccines that fail to promote antibody affinity maturation may prime for 

immune complex formation upon RSV infection (Delgado et al. 2009).

Although antibodies are important for resistance to infection, T cells are imperative for virus 

clearance. Thus, individuals with compromised T cell immunity can shed virus for months 

(Hall et al. 1986). Prolonged virus shedding is also observed in nude or irradiated mice 

(Cannon et al. 1987) and in mice depleted of both CD4+ and CD8+ lymphocytes (Graham et 

al. 1991). Furthermore, CD8+ cytotoxic lymphocytes may provide some protection in mice 

against infection, but this effect is short-lived (Connors et al. 1991;Connors et al. 1992). In 

infants with severe RSV infection, the peak of activated CD8+ T cell numbers in 

bronchoalveolar lavage (BAL) samples and in blood correlated with convalescence, 

consistent with a role for CD8+ T cells in recovery (Heidema et al. 2007).

6. Protective antigens

Identification of antigens able to induce a neutralizing and protective immune response was 

achieved initially by immunization of mice or cotton rats with recombinant vaccinia viruses 

encoding individual RSV gene products (Stott et al. 1987;Stott et al. 1986;Wertz et al. 

1987;Olmsted et al. 1986). It was promptly found that only the external F and G 

glycoproteins were able to confer long-lasting protection against RSV infection and that this 

protection correlated with induction of neutralizing antibodies. The nucleoprotein (N) and 

the M2-1 (or 22k) proteins were also able to induce partial and short-lived protection which, 

at least in the case of the M2-1was mediated by cytotoxic T lymphocytes (Connors et al. 

1992).
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It was also noticed that: i) recombinant vaccinia viruses expressing the F protein conferred 

higher level of protection against RSV than those expressing the G protein (Olmsted et al. 

1986) and ii) the neutralizing immune response against the F protein was cross-protective 

against viruses of a different antigenic group whereas the neutralizing and protective 

response against the G protein was restricted to viruses of the same antigenic group 

(Johnson et al. 1987a;Stott et al. 1987). These differences reflect the dissimilar structural and 

antigenic characteristics of the F and G glycoproteins and their differences at the level of 

antigenic and genetic relatedness between RSV isolates.

In the case of the F glycoprotein (the viral glycoprotein that mediates fusion of the virus and 

cell membranes), there is 89% amino acid sequence identity between the proteins of groups 

A and B of human RSV (Johnson and Collins 1988). This is reflected in the high level of 

antigenic relatedness observed with murine mAbs (Garcia-Barreno et al. 1989). Epitopes 

have been mapped in the F protein primary structure primarily by isolation and sequencing 

of mutants that grow in the presence of individual mAbs. These escape mutants normally 

contained single amino acid substitutions that obliterated the epitopes recognized by the 

antibodies used in their selection. Figure 2 summarizes the amino acid changes in escape 

mutants reported up to date by different groups (Arbiza et al. 1992;Lopez et al. 1998;Crowe 

et al. 1998;Zhao et al. 2004b;Zhao et al. 2004a). In most cases, selection was done with 

murine mAbs, except in the case of the mutant I266M that was selected with a recombinant 

human Fab fragment (Crowe et al. 1998). It is worth stressing that frequently the same 

mutation could be repeatedly selected with different antibodies (e.g., K272N isolated with 

mAbs 151, 1200, 47F and palivizumab). Occasionally, more than one amino acid change 

was selected at the same position (e.g., N262S or N262Y) and one of the changes (N268I) 

was also selected after passing the virus in the presence of a polyclonal rabbit antiserum 

raised against purified F protein (Tome et al. 2012). These findings probably reflect the 

dominance of certain epitopes and the propensity of the F protein to incorporate certain 

mutations but not others. The amino acid changes depicted in Figure 2 and therefore the 

corresponding antibody epitopes are clustered in three regions (antigenic sites) of the F 

protein primary structure, named sites II, I and IV and corresponding to sites A, B and C as 

designated by Beeler et al. (Beeler and Van Wyke 1989). The epitopes of antigenic sites II 

and IV (Anderson et al. 1985;Beeler and Van Wyke 1989;Garcia-Barreno et al. 1989) are 

very conserved among RSV strains while those of antigenic site I are group-specific; i.e., 

they are conserved only in RSV strains of the same antigenic group (Garcia-Barreno et al. 

1989).

In contrast to the antigenic and genetic conservation of the F protein, the G glycoproteins of 

RSV group A and B strains share less than 50% amino acid sequence identity (Johnson et al. 

1987b). This genetic variation is reflected in the high level of antigenic differences detected 

with anti-G mAbs (Garcia-Barreno et al. 1989). As with the F protein, the epitopes 

recognized by anti-G MAbs have been mapped in the protein primary structure mainly by 

selection and sequencing of escape mutants (Figure 3). Three types of epitopes were 

identified: i) epitopes conserved among all RSV strains that mapped in the central 

unglycosylated segment of the G protein ectomain, ii) group-specific epitopes that 

overlapped partially with the conserved epitopes and that were retained only in RSV strains 
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of the same antigenic group and iii) a majority of strain-specific epitopes that were located 

in the C-terminal third of the G protein ectodomain and that were present only in some RSV 

strains of the same antigenic group (Martinez et al. 1997). Additionally, and in clear 

distinction with the escape mutants selected with anti-F MAbs, those selected with anti-G 

mAbs frequently contained drastic genetic alterations, other than single amino acid changes 

and which included: i) frame-shift mutations that altered the C-terminal third of the G 

molecule (Garcia-Barreno et al. 1990), ii) premature stop codons that shortened the G 

polypeptide between 1 and 42 amino acids (Rueda et al. 1991;Rueda et al. 1995;Martinez et 

al. 1997), iii) multiple A-G transitions (A–G hypermutations) that change several amino 

acids, including some cysteines in the G protein ectodomain (Rueda et al. 1994;Martinez et 

al. 1997;Walsh et al. 1998) and iv) amino acid changes that prevent insertion of G in the 

viral membrane (Walsh et al. 1998). All these findings emphasize the extreme plasticity of 

the G molecule to adopt sequence changes, something that might be related to the fact that G 

is not required for RSV replication in Vero cells, although viruses lacking G are attenuated 

in HEp-2 cells and in vivo (Karron et al. 1997).

Another major difference between mAbs specific for the F and G glycoproteins is their 

potency and mechanism of neutralization. Whereas certain mAbs reacting with epitopes in 

sites II or IV of the F glycoprotein are potent neutralizers of RSV infectivity in vitro (Lopez 

et al. 1998) most mAbs specific of the G glycoprotein neutralize RSV very poorly, even if 

tested against the homologous strain used in their isolation. However mixtures of anti-G 

mAbs show a synergistic effect in neutralization that is not observed with anti-F MAbs 

(Martinez and Melero 1998;Anderson et al. 1988). It has then been postulated that 

neutralizing antibodies directed against the F glycoprotein inhibit RSV infectivity by 

blocking the conformational changes that follow activation of RSV F to initiate the process 

of virus-cell membrane fusion (Magro et al. 2010). In contrast, results obtained with anti-G 

mAbs suggest that neutralization is afforded in this case by steric hindrance of G protein 

interactions with cell surface components (likely proteoglycans). This steric inhibition 

requires simultaneous binding of several antibodies to the same G molecule, explaining the 

synergistic effect found with combinations of these antibodies (Martinez and Melero 1998). 

Despite these findings, it has been reported that a minority of human antibodies with high 

affinity for the central conserved region of RSV G are potent neutralizers of virus infectivity 

(Collarini et al. 2009) and may neutralize RSV infectivity by mechanisms others than steric 

hindrance.

In summary, most data indicate that F is more potent than G in inducing neutralizing and 

protective antibodies. The potent neutralizing antibody response afforded by anti-F 

antibodies is widely cross-reactive, while the poorer neutralizing anti-G response is rather 

strain or group-specific. These differences are probably deep-rooted in the level of genetic 

variability of F and G between RSV isolates and in the mechanism of virus neutralization 

afforded by different antibodies, particularly in vivo.
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7. Human antibody response

As noted in previous sections, most studies carried out so far with neutralizing antibodies 

have been done with murine mAbs. Therefore, two relevant questions are: i) what are the 

specificities of human neutralizing Abs? and ii) are they the same as those of murine Abs?

Not much is known about the specificities of human anti-RSV neutralizing Abs. This gap 

between human and animal studies is due at least in part to the inherent difficulty of 

experimenting with humans. The use of technologies to clone and express human antibodies 

produced by individual B cells should facilitate in the future dissecting the repertoire of 

specificities represented in the human neutralizing antibody response against RSV.

Nevertheless, it has been reported already that human Ig preparations contain antibodies that 

compete with most murine anti-F antibodies (Sastre 2004); however, human neutralizing 

Abs have been identified that recognize F protein fragments laying outside of the antigenic 

sites demarcated by murine mAbs (Sastre et al. 2004). Additionally, neutralizing Abs 

specific for the untriggered form of RSV F, not represented in the collections of murine 

mAbs so far described were recently unveiled in human Ig preparations (Magro et al. 2012). 

Therefore, although the specificities of murine anti-F Abs are present in human sera, human 

Abs seem to embrace a broader range of specificities than murine Abs.

Similarly certain specificities of anti-G mAbs also seem to be relevant in the human 

antibody response. Thus, human Igs were able to out compete binding of certain anti-G 

mAbs that recognized epitopes of the unglycosylated central segment of the G protein 

ectodomain (Sastre 2004). Furthermore, neutralizing antibodies could be purified from 

human Ig preparations by affinity chromatography with a fragment of the G glycoprotein 

corresponding to the conserved ectodomain segment (Sastre et al. 2004). In agreement with 

these results, group-specific serum antibodies directed against the central non-glycosylated 

G protein segment have been found after primary infections of children (Murata et al. 

2010b;Murata et al. 2010a). These antibodies are likely responsible for the partially group-

specific neutralizing antibody response reported in previous studies after primary RSV 

infections (Hendry et al. 1988;Muelenaer et al. 1991). However, it remains uncertain 

whether or not human sera contain Abs reacting with strain-specific epitopes of the C-

terminal third of the RSV G glycoprotein. Detection of this type of antibodies in 

convalescent sera is likely dependent on the use of an appropriate G protein (or fragment 

thereof) that matches the antigenic properties of the infecting virus. Since detailed 

information about the infecting virus is not available for most sera, detection of strain-

specific antibodies has been reported only in a few cases (Palomo et al. 2000;Cane et al. 

1996;Jones et al. 2002;Scott et al. 2007)

In summary, it is apparent that the antibody specificities of murine mAbs are also 

represented in human convalescent sera, but human antibodies seem to recognize a broader 

range of F and G protein epitopes than murine Abs. It will be important in the future to 

elucidate the actual relevance of the different antibody specificities for protection against 

infection and pathology. This might be particularly relevant in the case of anti-G Abs; for 

instance, it has been reported that certain murine Abs that block the interaction of the 
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fractalkine-like motif of RSV_G with the CX3CR1 receptor reduced pulmonary 

inflammation and virus replication in mice (Zhang et al. 2010b). Likewise, other Abs may 

block additional, but still unrecognized activities of the F or G glycoproteins involved in 

virus replication and/or pathology.

8. Antigenic variation, immune selection and RSV evolution

It has been observed that generally viral antigens accumulate amino acid changes at the sites 

that are recognized by neutralizing Abs as exemplified by the influenza virus haemaglutinin 

(HA) (Knossow and Skehel 2006). In this case, most of the sequence changes that are 

retained in viruses of the same subtype over the years involve residues on the surface of the 

HA head that are part of the epitopes recognized by neutralizing Abs. In other words, to 

escape neutralization by pre-existing antibodies new influenza strains are positively selected 

that can infect again the same human population.

The situation described for influenza virus is in apparent contradiction with that found in 

RSV and outlined in previous sections. Thus, in the case of human RSV, the most effective 

neutralizing antibodies are those directed against antigenic sites II and IV of the F 

glycoprotein (Figure 2), which are highly conserved among RSV isolates. In contrast, the 

antibodies that recognize epitopes in the C-terminal third of the G glycoprotein are only 

weakly neutralizing (Figure 3), although this segment of the G molecule represents an 

extreme example of sequence variation, compared with antigens of related viruses (e.g. 

influenza virus). In other words, the paradoxical situation in RSV is that the epitopes 

recognized by the most potent neutralizing antibodies are highly conserved whereas those 

recognized by poorly neutralizing antibodies are extremely variable.

As mentioned before, two types of evidence support the notion that the sequence variation 

found in the G protein is the result of positive selection: i) whereas synonymous nucleotide 

changes have a uniform distribution along the G protein gene, non-synonymous changes 

accumulate in the two variable mucin-like regions of G (Melero et al. 1997), in analogy with 

the accumulation of non-synonymous changes at the antigenic sites of influenza HA due to 

positive Darwinian evolution (Fitch et al. 1991) and ii) phylogenetic methods have identified 

several positively selected sites in group A and B of RSV isolates (Woelk and Holmes 

2001;Botosso et al. 2009). The fact that some of the positively selected sites coincide with 

epitopes recognized by anti-G mAbs and that the antigenic changes detected with a panel of 

anti-G mAbs correlated with the position of RSV isolates in a phylogenetic tree (Garcia et 

al. 1994) support the notion that positive selection of changes in the G glycoprotein might be 

immune driven.

Data from human studies offer conflicting interpretations about the relevance of antigenic 

variation and immune selection in protection against infection and in RSV evolution, 

respectively. On the one hand, as noted before the epitopes recognized by the most efficient 

neutralizing anti-F mAbs are highly conserved among RSV isolates and antibodies with the 

same specificities are present in human Ig preparations (Sastre et al. 2004). These results 

would argue against immune selection playing any role in the generation of RSV variability 

and support the idea that RSV vaccines may require only one virus strain or its antigens.

Melero and Moore Page 11

Curr Top Microbiol Immunol. Author manuscript; available in PMC 2016 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



On the other hand, studies conducted with convalescent sera have provided evidence that 

upon primary RSV infections there was some dominance of group-specific neutralizing 

antibodies (Muelenaer et al. 1991;Cane et al. 1996;Scott et al. 2007). This group-specific 

response was also observed by ELISA with sera from convalescent primary infections using 

segments of the central core of the G glycoprotein as antigens (Murata et al. 2010a;Scott et 

al. 2007;Cane et al. 1996). However, the group-specificity of the neutralizing and antigen-

binding antibodies was blurred upon secondary infections (Murata et al. 2010a). 

Consequently, there is a critical need for detailed assessment of the antibody specificities 

(including strain-specific) induced upon RSV infection and re-infection and their actual 

contribution to the human neutralizing immune response.

It is possible that the immune selective pressure on RSV is not as strong as that operating in 

influenza virus; for instance, if the antibody response is short-lived in RSV in comparison 

with influenza virus, replacement of pre-existing RSV strains by new variants may be a 

slower process than in influenza. Of note, the new variants of RSV group B with a 60-

nucleotide duplication in the G-protein gene replaced the pre-existing strains of the same 

antigenic group worldwide but after a 6–7 year period (Trento et al. 2010), which is clearly 

longer than the observed replacement of influenza A viruses by new variants (usually 2–3 

years). A combination of immune selection and high plasticity of the G protein may be at the 

basis of the extreme sequence variation observed for this gene among RSV isolates. In 

consequence, until new information concerning the specificities of human Ab responses is 

available, it would be wise to include viruses (or antigens) representing the two RSV 

antigenic groups in vaccine development.
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Figure 1. 
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Figure 2. Scheme of the F protein primary structure
The sequence length is indicated above the main rectangle. Black boxes denote the 

hydrophobic signal peptide (SP), fusion peptide (FP) and transmembrane region (TM). 

Shaded boxes symbolize heptad repeat sequences, HRA and HRB and the two arrows 

indicate the location of the proteolytic cleavage sites. Vertical lines denote the location of the 

indicated amino acid changes selected in escape mutants described in the following articles: 

(Arbiza et al. 1992;Lopez et al. 1998;Crowe et al. 1998;Zhao et al. 2004a;Zhao et al. 2004b). 

These amino acid changes have been grouped in antigenic sites I, II and IV as shown above 

the main rectangle.
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Figure 3. Scheme of the G protein primary structure
The sequence length is indicated above the main rectangle. Two mucin-like variable regions 

of the G protein ectodomain are indicated. Black dots denote Cys residues, black arrowheads 

denote N-glycosylation sites and short vertical lines (below the main rectangle) O-

glycosylation sites. The black box delineates the transmembrane region. The grey boxes 

delineate the location of conserved and group-specific epitopes in the central segment and 

the strain-specific epitopes in the C-terminal mucin-like region, respectively (Garcia-

Barreno et al. 1990;Rueda et al. 1991;Rueda et al. 1994;Rueda et al. 1995;Martinez et al. 

1997;Walsh et al. 1998). The continuous horizontal line denotes the segment of identical 

sequence (amino acids 164–176) in all RSV isolates and the broken horizontal line the 

segment of identical sequence (amino acids 163–189) in all RSV group A isolates.
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