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ABSTRACT

Five clinical isolates of Aspergillus fumigatus that exhibited a similar pattern of

reduced susceptibility to itraconazole and other triazole drugs were analysed.

Sequence analysis of genes encoding the 14-sterol demethylases (cyp51A

and cyp51B) revealed that all five strains harboured mutations in cyp51A

resulting in the replacement of methionine at residue 220 by either valine, lysine

or threonine. The mutated cyp51A genes were introduced into a wild type A.

fumigatus wild type strain, the transformants exhibited reduced susceptibility to

all triazole agents confirming that the mutations were responsible for the

resistance phenotype.



Aspergillus fumigatus is one of the most prevalent airborne fungal pathogens

causing infection worldwide with a high mortality and morbidity in the

immunocompromised host (14). Although A. fumigatus is intrinsically resistant

to fluconazole (FLZ), the newer triazoles such as itraconazole (ITC),

posaconazole (POS), and voriconazole (VRC) are active both in vitro and in

vivo against this species (2, 11, 24). However, a number of A. fumigatus

isolates with in vitro ITC-resistance have been described (1, 4, 8, 9, 16, 19, 20),

in some cases the resistance detected in vitro has been confirmed in animal

models of infection (3, 7). Resistance to VRC has been recently detected in

clinical and laboratory strains (E. Manavathu, I. Baskaran, S. Krishnan, G.

Alangaden, P. Chandrasekar. Cytochrome P450 14-alpha sterol demethylase

mutation dependent triazole cross-resistance in Aspergillus fumigatus. Abstract:

M-471. page 444. and E. Manavathu, A. Espinel-Ingroff, G. Alangaden, P.

Chandrasekar. Molecular Studies on VOR-resistance in a clinical isolate of

Aspergillus fumigatus. Abstract: M-392. 43rd ICAAC Abstracts, American

Society for Microbiology, September, 2003, page 440). In addition, it appears

that some clinical Aspergillus strains are starting to show high MICs against the

new triazole agents like posaconazole and ravuconazole (19, 24).

The triazoles inhibit the ergosterol biosynthesis pathway via the inhibition of

14-sterol demethylase (Cyp51), an enzyme that removes the methyl group at

position C-14 of precursor sterols. In A. fumigatus, there are two distinct but

related Cyp51 proteins encoded by cyp51A and cyp51B (18). Two molecular

mechanisms of resistance to azoles have been proposed in A. fumigatus: the

first is reduced intracellular accumulation, due to either increased expression of

efflux pumps (8, 30) or reduced penetration of the drug (15). The other



mechanism of resistance is through the modification of Cyp51 (8, 22). To date

the most prevalent mechanism of resistance in A. fumigatus appears to be the

modification of Cyp51, specifically mutations in cyp51A. These mutations, in

both clinical strains and laboratory generated spontaneous mutants, have been

associated with two different susceptibility profiles: (i) cross-resistance to ITC

and POS has been associated with amino acid substitutions at glycine 54 (G54)

(9, 16, 20) (ii) cross-resistance to VRC and ravuconazole (RAV) has been

associated with amino acid substitutions at G448 (E. Manavathu, I. Baskaran,

S. Krishnan, G. Alangaden, P. Chandrasekar. Cytochrome P450 14-sterol

demethylase mutation dependent triazole cross-resistance in Aspergillus

fumigatus. Abstract: M-471. 43rd ICAAC Abstracts, American Society for

Microbiology, September, 2003, page 444). A third pattern of azole resistance

was recently reported (9, 19). This new pattern is characterized by high MICs

for ITC, VRC, RAV and POS. The majority of the strains exhibiting this

susceptibility profile harbour amino acid substitutions at methionine 220 (M220),

an area of Cyp51A that was not previously associated with amino acid

substitutions causing reduced susceptibility to azoles (9, 16, 20).

The objective of this work was to determine if the amino acid substitutions at

M220 were sufficient to confer reduced susceptibility to azoles in A. fumigatus.

To this end, cyp51A alleles encoding the different point mutations were

introduced into a wild type (azole susceptible) A. fumigatus strain (CM-237), all

three amino acid substitutions conferred reduced susceptibility to azoles.

Fungal strains and antifungal susceptibility testing. Eight clinical A.

fumigatus strains from the Mycelial Collection of the Spanish National Centre for

Microbiology (CNM-CM) were analyzed (Table 1). (i) strains with elevated MICs



to all azole drugs:CNM-CM-1252 (AF-90), CNM-CM-1245 (AF-91), CNM-CM-

2158 (AF-1422), CNM-CM-2159 (F/6919), CNM-CM-2164 (SO/3829). (ii)

susceptible strains (MIC ≤0.5 µg/ml) to all four triazoles: (CNM-CM-2739, CNM-

CM-1369, CNM-CM-237). In addition, CM-237 was utilized for describing the

sequence of the genes cyp51A and cyp51B (18). A. flavus ATCC 204304 and

A. fumigatus ATCC 204305 were used as quality control strains for

susceptibility testing.

Broth microdilution susceptibility testing was performed as described in the

NCCLS document M38-P (21) with the modifications described previously (2,

23, 26). ITC (Janssen Pharmaceutical, Madrid, Spain), VRC (Pfizer S.A.,

Madrid, Spain), RAV (Bristol-Myers Squibb, Madrid, Spain), and POS

(Schering-Plough Research Institute, Kenilworth, NJ) were obtained as powders

from their respective manufacturers. The drugs were dissolved in dimethyl

sulfoxide (DMSO) (Sigma, Madrid, Spain) at 1600 µg/ml, the final concentration

range assayed was 8.0-0.015 µg/ml. Visual readings were performed using a

microtiter reading mirror, the MIC was defined as the lowest concentration of

drug that completely inhibited fungal growth after 48 hours of incubation at

35ºC. Susceptibility tests were performed at least twice with each strain on

different days. Susceptibility results are shown in Table 1. The five strains

exhibited reduced susceptibility to all four triazoles with variable MICs

depending on antifungal drugs and strain, being POS the most active in vitro

compound.

PCR amplification and sequence analysis of the cyp51A and cyp51B

genes. Conidia from each strain were inoculated into 3 ml GYEP broth (2%

glucose, 0.3% yeast extract, 1% peptone) and grown overnight at 37ºC.



Mycelial mats were recovered and subject to a DNA extraction protocol (18).

The full coding sequences of cyp51A and cyp51B were PCR amplified as

previously described (9). To rule out the possibility that any sequence changes

identified were due to PCR induced errors, each mutant was independently

analyzed twice.

Sequence analysis of cyp51A revealed a number of point mutations. The

five ITC-resistant strains (CM-1252, CM-1245, CM-2158, CM-2159, CM-2164)

each had a single nucleotide substitution in codon 220 (encodes methionine)

resulting in the introduction of either valine, lysine or threonine (Table 1). The

five ITC-resistant strains also harboured point mutations in cyp51B, however

two of the three mutations detected were silent, the one missense mutation

(resulting in the replacement of Asp by Glu at codon 387) was not conserved

across the five isolates (Table 1). Sequence alignments of the region

encompassing M220 revealed that this residue is not a strictly conserved amino

acid between all yeasts and moulds, although this position is conserved in many

fungal species and it is on the edge of a highly conserved region (Figure 1).

Moreover, the fact that five ITC-resistant strains harbored the same mutation

strongly suggests that the substitution is associated with azole resistance. In

this regard, the region encompassing the mutation was sequenced in 22 A.

fumigatus ITC-susceptible clinical strains; none of the 22 strains had mutations

at codon 220.

Replacement of the wild type cyp51A gene with cyp51A alleles that

encode substitutions at codon 220. The cyp51A alleles from strains CM-

1252, CM-2159 and CM-2164 strains were PCR amplified and each was

individually electroporated into the wild type A. fumigatus strain CM-237.



Electroporation was carried out using a protocol previously described for A.

nidulans (28) and subsequently adapted for A. fumigatus (32), transformants

were selected on media containing ITC as described previously (9). ITC-

resistant transformants appeared after 2-7 days incubation. The transformants

were labeled with a 'T' followed by a roman numeral (Table 1). The number of

ITC-resistant transformants obtained using the cyp51A genes from strains CM-

2159, CM-1252 and CM-2164 were four (T-III, T-VI, T-VII and T-XI), one (T-XII)

and one (T-XXII), respectively. To confirm that each transformant contained

only one copy of the cyp51A gene we performed a Southern blot analysis.

Chromosomal DNA was extracted from each transformant, digested with either

SalI or BamH1 (Amersham Biosciences, Madrid, Spain) and resolved by gel

electrophoresis. Southern blots (27) were probed with a labeled fragment of

cyp51A (18), in every case only a single band hybridized to the probe (data not

shown). The cyp51A and cyp51B genes from the six transformants were

sequenced; all six appeared to have incorporated the mutated cyp51A allele.

With the exception of the original mutation at codon 220, none of the

transformants had any other mutations in either cyp51A or cyp51B. The

susceptibility of the transformants to triazoles was determined as described

above, in general the transformants exhibited similar susceptibility profiles to the

original clinical isolates (table 1).

In order to identify the gene replacement events we used a direct

selection procedure. Consequently, there is a possibility that the mutations

identified in the transformants arose spontaneously and were selected for

through the inclusion of ITC in the transformation plates. However, three

observations argue against this possibility. Firstly, the three alleles used in the



transformations each encoded a different substitution at residue 220. The

mutations identified in the six transformants matched those present in the donor

cyp51A allele, such congruence would be highly unlikely if the mutations had

arisen spontaneously. Secondly, in control experiments, in which the donor

DNA was replaced by water, no resistant isolates were detected. Finally, there

have been no prior reports of spontaneous mutations arising in this area of the

A. fumigatus Cyp51A protein in laboratory selected mutants (16, 20, Abstract:

M-471. page 444, E. Manavathu, I. Baskaran, S. Krishnan, G. Alangaden, P.

Chandrasekar. Cytochrome P450 14-alpha sterol demethylase mutation

dependent triazole cross-resistance in A. fumigatus).

To date there have been a number of reports that have identified

polymorphisms in the cyp51 gene from clinical C. albicans isolates that are

responsible for and/or associated with azole antifungal resistance to fluconazole

(10, 17, 29). In some filamentous fungi, one mutation (Y136F) has been

correlated with resistance to different demethylase inhibitors (5, 6). In A.

fumigatus specific mutations in cyp51A have been associated with decreases in

susceptibility to ITC and POS (9, 16). In this report, substitutions at residue 220

were detected in five independent ITC-resistant isolates. The minor differences

in the way the mutations impact the susceptibility to specific azoles presumably

reflect differences in the way the azoles interact with the target protein. The

clinical significance of these differences, if any, has yet to be determined.

The precise manner in which substitutions at M200 impact triazole

binding is not immediately obvious. Recently, a three dimensional model of

14demethylase from C. albicans was built using the crystallographic

coordinates of four prokaryotic P450 enzymes (12). The docking of both the



substrate and triazoles into the active site of the enzyme was explored. It was

postulated that the long side chain of ITC interacted with the residues in the

substrate access channel. This channel is lined by hydrophobic and aromatic

residues such as F228, I231, F233, V234 and F235 (corresponding to F214,

I217, F219, M220, and L221 in Cyp51A from A. fumigatus). Some of these

residues are predicted to have direct interactions with either the substrate or the

antifungal drug (12). From this model the substitutions at methionine 220 might

be expected to disrupt drug binding. Recently, a homology model of Cyp51A

from A. fumigatus was constructed based on the X-ray structure of the CYP51

orthologue from Mycobacterium tuberculosis (31). Some of the residues in the

predicted A. fumigatus Cyp51 F-G loop (T215 and P230) are predicted to have

contact with ITC and POS (31) but not directly with VCZ. Podust et al.

crystallized the Mycobacterium tuberculosis Cyp51 in the presence of FLC (25).

They suggested that substitutions causing azole-resistance in fungi are located

in regions of the protein involved conformational changes associated with the

catalytic cycle, rather than in residues that directly contact the drug (25). Also, it

has been previously pointed out that it seems more important to look at the role

of specific residue mutations in relation with their local environments (13).

Further evidence will have to wait until the crystal structure for A. fumigatus

Cyp51s is obtained in conjunction with the antifungal drugs. In the meantime,

the identification of amino acid substitutions responsible for azole resistance

continues to provide new insights into the way the drugs interact with Cyp51A.

Such knowledge may aid in the development of more active molecules. Further

investigations into the functional analysis of the Cyp51A and Cyp51B proteins of

A. fumigatus are currently in process in our laboratory.
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Figure 1. Alignment of Cyp51 proteins. A segment of Cyp51A (amino acids

205-247) (GenBank AAK73659) and Cyp51B (amino acids 220-262) (GenBank

AAK73660) from A. fumigatus with the corresponding CYP51 segments from:

Candida albicans (CaP450; GenBank. AAF00598), C. glabrata (CaErg11;

GenBank AAB02329), C. tropicalis (CtErg11; GenBank AAA53284),

Saccharomyces cerevisiae (ScErg11; GenBank AAA34546),

Schizosaccharomyces pombe (ScpCyp51; GenBank CAA90803), C. krusei

(CtErg11; GenBank AAO83898), Ustilago maydis (UmErg11; GenBank

CAA88176), Cryptococcus neoformans (CnErg11; GenBank AAF12370),

Penicillium digitatum (PdCyp51; GenBank. CAD27793), A. nidulans (AnCyp51;

GenBank AAF79204), Erysiphe graminis (EgCyp51; GenBank AAC97606),

Monilia fructuosa (MfCyp51; GenBank AAL79180), Venturia ineaqualis

(ViCyp51; GenBank AAF71293), Venturia nashicola (VnCyp51; GenBank

CAC85409), Leptosphaeria maculans (LmCyp51; GenBank AAN28927),

Botryotinia fuckeliana (BfCyp51; GenBank AAF85983), Neurospora crassa

(NcCyp51; GenBank EAA34813), Mycosphaerela graminicola (MgCyp51;

GenBank AAF74756), Tapesia yallundae (TyErg11; GenBank AAG44831),

Uncinula necator (UnCyp51; GenBank AAC49812). The alignment was

performed by MegAligne using Clustal V. (DNAstar, Inc., Lasergene, Madison,

USA). Asterisks (*) indicate residues located in the F-G loop referred to in the

text.


