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ABSTRACT 

Five Spain9V-3 Streptococcus pneumoniae were isolated from a patient with bronchiectasis 

who had received long-term ciprofloxacin therapy: one ciprofloxacin-susceptible strain 

was isolated before treatment and four ciprofloxacin-resistant strains were isolated during 

treatment. Resistant strains derived from the susceptible either by parC mutation (low-

level resistance) or by parC plus gyrA mutation (high-level resistance). This study shows 

that ciprofloxacin therapy in a patient colonized with susceptible S. pneumoniae may 

select fluoroquinolone-resistant mutants.  
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Streptococcus pneumoniae remains a major etiological agent of community-acquired 

pneumonia, meningitis and acute otitis media. The emergence of resistance to antibiotics 

commonly used for the treatment of pneumococcal infections (13, 23) has highlighted the 

importance of the new fluoroquinolones that have been recommended for the treatment of 

respiratory tract infections (5). Although the prevalence of ciprofloxacin (Cip) resistance in S. 

pneumoniae is still low in Spain (3-7%) (1, 16, 27) and Canada (2%) (7), prior 

fluoroquinolone administration is a risk factor for resistant strains selection, as observed for 

infections caused by ciprofloxacin-resistant (CipR) (28) and levofloxacin-resistant (8, 34) S. 

pneumoniae. Likewise, resistance has been reported in blood isolates of viridans streptococci 

from neutropenic cancer patients who received fluoroquinolone prophylaxis (11, 35). 

The targets of the fluoroquinolones are DNA gyrase (gyrase, GyrA2GyrB2) and DNA 

topoisomerase IV (topo IV, ParC2ParE2) enzymes (9). The pneumococcal parC and parE 

genes are homologous to gyrA and gyrB, respectively (3, 19, 26). Biochemical studies have 

established that Cip inhibits preferentially the pneumococcal topo IV that gyrase enzymes (10, 

18, 24). Genetic studies have identified fluoroquinolone-resistance mutations in a discrete 

region of ParC, ParE, and GyrA termed the quinolone resistance-determining region (QRDR). 

Low-level (LL) CipR strains had mutations altering the QRDRs of one of the two subunits of 

topo IV:  S79 or D83 of ParC (12, 15, 19, 26, 32), D435 of ParE (29). High-level (HL) CipR 

strains had changes affecting both QRDRs of ParC and GyrA (S81, E85)(12, 15, 19, 26, 32) or 

ParE and GyrA (29). Direct biological evidence showing that those mutations are involved in 

resistance has been obtained by transformation experiments. Single parC mutations confer 

low-level (LL) Cip-resistance (14, 19, 32), and, once the cells have acquired this LL-CipR 

phenotype, it is possible to transform to a higher level of resistance using DNA containing the 

gyrA QRDR from the HL-CipR strains (14, 19). 
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We describe herein the in vivo emergence of fluoroquinolone resistance in S. 

pneumoniae strains isolated from a patient that received multiple courses of Cip therapy for 

the treatment of a persistent Pseudomonas aeruginosa-infected bronchiectasis.  

 Patient history. A 64-year-old man was first seen in September-1996 with a longstanding 

history of chronic cough productive of purulent sputum. In his first clinical evaluation, a high-

resolution thoracic scanner demonstrated the presence of bilateral bronchiectasis, and a 

ciprofloxacin-sensitive (CipS) S. pneumoniae (3983) was isolated from the sputum. In April-

1997 he was first admitted to the hospital with a severe hypercapnic respiratory failure, and a 

CipS P. aeruginosa was isolated. Subsequently the patient received Cip (500 mg/ 12 h for 10 

days) for the exacerbations. In October-1997, a HL-CipR S. pneumoniae (4371) was isolated. 

The patient remained under control and free of exacerbations until March-1998, when a CipS 

S. pneumoniae (4579) was isolated. In September 1998, due to the isolation of a CipS 

Haemophilus influenzae and CipS Moraxella catharralis, the patient was reintroduced into 

Cip, and one month later a LL-CipR S. pneumoniae (4837) was isolated. In December-1998 

the patient had a hypercapnic respiratory failure and a HL-CipR S. pneumoniae (4866) and a 

CipS P. aeruginosa were isolated. In May-1999 he was readmitted to the hospital with a new 

infectious episode, a CipS S. pneumoniae (5181) and a CipS P. aeruginosa strain were isolated 

from sputum. From September-1999 to April-2000, the patient was treated regularly with Cip. 

On the visit at the Respiratory out-patient clinic (April-2000) the sputum yielded a CipR P. 

aeruginosa and a HL-CipR S. pneumoniae (5558). The patient died two weeks later due to an 

irreversible hypercapnic respiratory failure.   

 Characterization of S. pneumoniae isolates. The antibiotic resistance patterns of the 

strains, serotypes, MICs of selected fluoroquinolones (determined as previously described, 20) 

and QRDRs mutations are shown in Table 1. PCR products containing gyrA, gyrB, parC, and 

parE QRDRs were obtained as previously described (11), separated in agarose gels (30), 
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purified and sequenced on both strands. The HL-CipR (MIC  64 g/ml) strains showed cross-

resistance to other fluoroquinolones. Given the fluoroquinolone MICs for the LL-CipR 4837 

strain, this strain could be considered as susceptible according to the NCCLS breakpoint 

criteria (21). However this strain has mutations that would favor the appearance of HL-CipR 

strains and maybe those breakpoints should be revised in accordance. The LL-CipR strain 4837 

(MIC of 8 g/ml) had a parC mutation and the HL-CipR strains had parC plus gyrA mutations. 

Strains 3983, 4371 and 4837 share the same serotype (9V) and PFGE patterns 

(determined as described previously, 31), belonging to the Spain9V-3 clone (17). The two last 

9V serotype HL-CipR isolates (4866 and 5558) share an identical PFGE pattern that differs 

from that of the CipS 3983 and ATCC 700671 strains by three-band difference and are 

considered to be Spain9V-3 subtypes (33). Despite those PFGE pattern differences that could 

be a consequence of genome rearrangements that are common among S. pneumoniae (6), all 

Spain9V-3 strains showed identical polymorphisms on their QRDRs with respect to the 

sequence of the R6 strain: K137N change in ParC, I460V change in ParE, and a change in the 

Y74 codon of GyrA (TAT instead TAC) (Table 1). A genealogy of the strains was derived. 

The HL-CipR strain 4371 could derive from the CipS 3983 strain by acquisition of two 

changes: ParC S79Y and GyrA S81F. Although the LL-CipR strain from which strain 4371 

(October, 1997) has been derived has not been identified in this work, because sputum 

cultures were not performed between April-September 1997, that strain could be present in 

the respiratory tract of the patient during this period. Likewise, the LL-CipR 4837 strain could 

also derive from the CipS 3983 strain by acquisition of a S79F ParC change. The two last HL-

CipR isolates (strain 4866 and 16 months later, strain 5558) showed S79F ParC and S91F 

GyrA changes.  

The analysis of the S. pneumoniae strains sequentially isolated from this patient clearly 

shows that resistance develops during treatment by mutation in the primary (topo IV) and 
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secondary (gyrase) targets. Initially, the patient was infected-colonized by a CipS Spain9V-3 

strain (3983) and it was undergoing serial mutagenesis when he was receiving Cip therapy, 

yielding deferent degrees of Cip resistance (Fig. 1). This in vivo acquisition of resistance is 

consistent with genetic transformation experiments (15, 19) and with generation of CipR 

mutants (25) under laboratory conditions. The emergence of CipR S. pneumoniae occurred 

concurrently with Cip treatments and could be favored for the low serum concentrations 

yielded with this compound (1.5 – 3 g/ml), which is close to the MIC value (0.5 – 1 g/ml) 

for CipS strains. On the other hand two CipS strains (4579 and 5181), with different serotypes, 

PFGE types and gene polymorphisms appeared after periods without treatment, showing that 

without antibiotic pressure there was no selection of resistant mutants. 

 In our patient, previous chronic use of fluoroquinolones for a persistent bronchial 

infection was a risk factor in the development of antibiotic resistance, not only in the 

microorganisms considered causative of infectious exacerbations, such as P. aeruginosa, but 

also for those colonizing or co-infecting bronchiectasis. Results from our group demonstrated 

that prior fluoroquinolone use, purulent bronchitis and prior hospitalization, are risk factors 

for developing respiratory tract infections caused by CipR pneumococci (J. Liñares, F. Tubau, 

R. Pallarés, M. J. Ferrándiz, M. A. Domínguez, F. Manresa, A. G. de la Campa, and R. 

Martín. Abstr. 40th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 2106, 2000)  

Since infectious episodes are frequent and recurrent in chronic obstructive pulmonary 

disease (COPD) and bronchiectasis, antibiotics are generally prescribed in an empirical way, 

without bacteriological studies. Should the clinician reuse a fluoroquinolone in a patient with 

bronchiectasis once it has already been used? According to our own experience, and previous 

published data (8), a high risk of fluoroquinolone resistance development of S. pneumoniae in 

patients with recent fluoroquinolone therapy may exist, and it must be considered before the 

introduction of an empirical antibiotic. In our experience, previous use of fluoroquinolones 
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may develop cross-resistance to levofloxacin and other newer fluoroquinolones. Thus the 

empiric and systematic use of levafloxacin in the treatment of exacerbations of COPD or 

bronchiectasis has to be questioned, and a modification of the ATS (2) and IDSA (4) 

guidelines could be necessary.  

 Today, restriction of the use of fluoroquinolones and performance of susceptibility 

studies for monitoring the prevalence of fluoroquinolone-resistant pneumococci is 

recommended. It is important to keep in mind that most patients infected with invasive 

multiresistant pneumococci may still be treated with an appropriate betalactam such as 

amoxycillin or ceftriaxone (22, 23). 
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FIG. 1. Time course of ciprofloxacin treatments and emergence of S. pneumoniae strains.  

Only mutations involved in fluoroquinolone resistance are indicated. NT, not typeable. 
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TABLE 1. Susceptibilities to fluoroquinolones and mutations in the topoisomerases QRDR of S. pneumoniae clinical isolates a  

 

Strain Type PFGE a Resistance  

pattern b 

MIC (g/ml) of c: Mutation(s) in the QRDR of: d  

    CIP LVX GAT MXF ParC GyrAb ParEb 

R6 NT  S 0.5 0.5 0.25 0.12 None None None 

ATCC 49619 19F  PEN 1 1 0.25 0.12 None Y74 (TAT) None 

ATCC 700671 9V Spain9V -3 PENSXT 1 0.5 0.25 0.12 K137N Y74 (TAT) I460V 

3983 9V Spain9V -3 PENSXT 1 0.5 0.25 0.12 K137N Y74 (TAT) I460V 

4371 9V Spain9V -3 PENSXT 128 32 8 4 S79Y, K137N S81F, Y74 (TAT) I460V 

4579 10 B S 1 0.5 0.25 0.12 K137N   

4837 9V Spain9V -3 PENSXT 8 2 0.5 0.25 S79F, K137N  Y74 (TAT) I460V 

4866 9V Spain9V -3* PENSXT 64 16 4 4 S79F, K137N S81F, Y74 (TAT) I460V 

5181 NT D S 0.5 0.5 0.25 0.12 K137N   

5558 9V Spain9V -3* PENSXT 64 16 4 4 S79F, K137N S81F, Y74 (TAT) I460V 
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a The asterisk indicates that those strains are Spain9V-3 clone subtypes.   

b S, susceptible to all antibiotics tested; PEN, resistant to penicillin (MICs of 2-4 g/ml, except for ATCC 49619 that was 0.25 g/ml); SXT; 

resistant to trimethropim-sulfamethoxazole (MICs of 4/76 g/ml); . 

c CIP, ciprofloxacin; LVX, levofloxacin; GAT, gatifloxacin; MXF, moxifloxacin. 

d Residue changes involved in fluoroquinolones resistance are underlined. Mutations (by reference to the R6 DNA sequence) were as follows: 

ParC, S79F (TCTTTT), K137N (AAGAAT); GyrA S81F (TCCTTC); ParE I460V (ATCGTC). The strains indicated harbored a silent 

mutation (TACTAT) at codon 74 of the gyrA sequence. No changes in the QRDR of GyrB were found.  , not determined. 

 

 


