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levels are regulated by genetic and environmental factors. However, large-scale human studies have
failed to replicate the observed genetic associations, and epigenetic factors such as DNA methylation
have never been examined in relation to TMAO levels.

Methods and results: We used data from the family-based Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) to investigate the heritable determinants of plasma TMAO in humans. TMAO was
not associated with other plasma markers of cardiovascular disease, e.g. lipids or inflammatory cy-
tokines. We first estimated TMAO heritability at 27%, indicating a moderate genetic influence. We used
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Genetic 1000 Genomes imputed data (n = 626) to estimate genome-wide associations with TMAO levels,
Epigenetic adjusting for age, sex, family relationships, and study site. The genome-wide study yielded one sig-
Methylation nificant hit at the genome-wide level, located in an intergenic region on chromosome 4. We subse-
Trimethylamine-N-oxide quently quantified epigenome-wide DNA methylation using the Illumina Infinium array on CD4" T-

cells. We tested for association of methylation loci with circulating TMAO (n = 847), adjusting for age,
sex, family relationships, and study site as the genome-wide study plus principal components
capturing CD4" T-cell purity. Upon adjusting for multiple testing, none of the epigenetic findings were
statistically significant.
Conclusions: Our findings contribute to the growing body of evidence suggesting that neither genetic nor
epigenetic factors play a critical role in establishing circulating TMAO levels in humans.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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List of abbreviations

CpG 5'—cytosine—phosphate—guanine—3’ DNA site

CPMG  Carr-Purcell-Meiboom-Gill (pulse sequence)

CVD cardiovascular disease

FID free induction decay (signal)

GOLDN Genetics of Lipid Lowering Drugs and Diet Network
(Study)

MAF minor allele frequency

NMR nuclear magnetic resonance
SNP single nucleotide polymorphism
TMA trimethylamine

TMAO trimethylamine-N-oxide

1. Introduction

Trimethylamine-N-oxide (TMAO), a pro-atherogenic metabolite
species, has recently emerged as a possible causal risk factor for
cardiovascular disease (CVD) [1]. TMAO is synthesized in the liver
from trimethylamine (TMA), which in turn is released by the gut
flora from TMA-containing dietary phospholipid components such
as choline, betaine, lecithin, and L-carnitine. Plasma concentrations
of L-carnitine, a nutrient commonly found in red meat and seafood,
have been linked to both prevalent and incident CVD in a TMAO-
dependent manner [2]. Furthermore, elevated plasma TMAO was
associated with increased cardiovascular risk even in low-risk
subgroups [3]. Other studies have linked TMAO levels to clinical
outcomes in the context of heart failure [4] and chronic kidney
disease [5], highlighting its importance in chronic disease
pathogenesis.

Animal studies have shown that circulating TMAO levels are
regulated by genetic and environmental factors [6]. Specifically, a
genome-wide association study conducted in mice identified
robust associations between sequence variation and TMAO levels;
however, these findings were not replicated in a large-scale human
sample [7] and the heritability of TMAO in humans remains to be
established. In addition to DNA sequence variants, methylation loci
may play a role in TMAO homeostasis because epigenetic processes
integrate both genetic and environmental inputs such as diet. For
example, betaine—one of the dietary substrates for TMAO pro-
duction—can serve an alternate methyl source for converting ho-
mocysteine to methionine [8], increasing DNA methylation and
altering gene expression. Consistent with that hypothesis, a recent
human study reported inverse associations between plasma TMAO
and methylation capacity, reflected in altered concentrations of S-
adenosylhomocysteine and S-adenosylmethionine [9]. Despite the
biological plausibility of epigenetic associations with TMAO in
humans, such links have not yet been investigated on a genome-
wide level. Although TMAO concentrations in urine are an order
of magnitude higher than in plasma and easier to measure, using
plasma concentrations of TMAO reduces variation due to acute
dietary intake, resulting in more reliable measurements [10]. Using
family data from the metabolically healthy population of the Ge-
netics of Lipid Lowering Drugs and Diet Network (GOLDN), we
present the first heritability estimates of circulating TMAO as well
as the first human epigenome-wide study of DNA methylation in
relation to this promising biomarker.

2. Methods
2.1. Study population

The GOLDN study [11] recruited families of European descent
with at least two siblings at two centers of the NHLBI Family Heart
Study (Minneapolis and Salt Lake City). The primary aim of the
study was to characterize genetic and epigenetic predictors of
variability in lipid response to two interventions, namely a high-fat
meal and a 3-week fenofibrate challenge. Both DNA and plasma
TMAO for the current study were quantified on pre-intervention
(baseline) samples to exclude potential effects of the diet and
drug interventions. All participants provided written informed
consent. Institutional Review Boards at University of Minnesota,
University of Utah, and Tufts University/New England Medical
Center approved the study protocol. GOLDN screened ~1350 in-
dividuals and excluded those with age <18 years; fasting tri-
glycerides >1500 mg/dL; recent history of myocardial infarction,
coronary bypass surgery, or coronary angioplasty; self-report of a
positive history of liver, kidney, pancreas, or gall bladder disease, or
a history of nutrient malabsorption; current use of insulin;
abnormal liver or kidney function; in women of childbearing po-
tential, pregnancy, breastfeeding, not using an acceptable form of
contraception, yielding a net sample of 1048 individuals that con-
sented to the use of their DNA in research.

2.2. TMAO measurements

We measured TMAO levels by proton nuclear magnetic reso-
nance (NMR) spectroscopy using a Vantera® NMR Clinical
Analyzer at LipoScience (now LabCorp, Raleigh, NC). Briefly,
plasma was diluted with citrate/phosphate buffer (3:1 v/v) to
lower the pH to 5.3 in order to move the TMAO signal away from
the overlapped signal from betaine. The diluted specimen was
placed in a barcoded sample vial, from which 200 pL was then
automatically injected with preheating to 47 °C into the flowcell of
a 400 MHz superconducting magnet. Spectra were acquired using
a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence by signal
averaging 48 transients with a total acquisition time of 5.5 min per
sample. Free induction decay (FID) signals were multiplied by an
exponential window function with a 0.1 Hz line broadening,
Fourier transformed, and automatically phased and baseline cor-
rected. The TMAO methyl signal at ca. 3.30 ppm was quantified
using a proprietary non-negative linear least squares analysis that
models the line shape as a mix of Gaussian and Lorentzian peak
shapes. The derived TMAO signal amplitudes were then trans-
formed into pmol/L concentrations using a conversion factor
determined from analysis of dialyzed plasma samples spiked with
known amounts of TMAO. NMR-derived TMAO concentrations are
highly correlated (r? = 0.98) with those measured using the liquid
chromatography/mass spectrometry assay developed at the
Cleveland Clinic [2].

2.3. Epigenetic phenotyping

We measured DNA methylation in GOLDN on the epigenome-
wide scale using the Illumina Infinium HumanMethylation450
Beadchip (Illumina, San Diego, CA) as previously described [12,13].
Briefly, to reduce the effect of cell type, we restricted the mea-
surements to CD4™ T-cells that were isolated from peripheral blood
frozen buffy coat samples. We isolated DNA using commercially
available DNeasy kits (Qiagen, Venlo, Netherlands). We quantified
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methylation using B scores (proportion of total signal from the
methylation-specific probe or color channel) and detection P-
values (probability that the total intensity for a given probe falls
within the background signal intensity). We estimated both f
scores and detection P-values using the GenomeStudio software
(Illumina, San Diego, CA). Quality control exclusion criteria were:
scores with an associated detection p-value greater than 0.01,
samples with more than 1.5% missing data points across ~470,000
autosomal CpGs, or probes where 10% of samples or more failed to
yield adequate intensity [13]. After exclusions, we normalized P
scores (separately for Infinium I and II chemistries) using the
ComBat package to address batch effects [14]. Finally, we removed
methylation loci where the probe sequence mapped to a location
that did not match the annotation file or to more than one locus.
The final set of CpGs included 463,995 loci.

2.4. Genotyping

We genotyped GOLDN participants at 906,600 loci using the
Affymetrix Genome Wide Human SNP Array 6.0 (Affymetrix, Santa
Clara, CA) as described in prior publications [15]. We called geno-
types using the Birdseed algorithm [16]. We removed 53,530
monomorphic loci and 82,462 SNPs with a call rate below 96%
(1556 SNPs overlapped on these two criteria). Additionally, we
removed any SNPs based on the number of families with Mendel
errors as follows: 1486 SNPs with minor allele frequency
(MAF) > 20% and Mendel errors in 3 + families, 1338 SNPs with
20% > MAF>10% and Mendel errors in 2 + families, 1767 SNPs with
20% > MAF>10% and Mendel errors in 1 + family, and 9592 SNPs
with MAF<5% and any Mendel errors. In families with remaining
Mendel errors, the erroneous SNPs were set to missing (31,595
loci). 718,542 SNPs remained in the analysis following the quality
control procedures described above. Of those, only 12 failed the
Hardy-Weinberg equilibrium test at P-value < 10~°. After removal
of the 64,908 SNPs with MAF<1%, 654,634 SNPs were available for
imputation.

We performed imputations in two stages: pre-phasing using the
MACH software/library and imputation using Minimac software
(Abecasis Lab, Ann Arbor, MI) [ 17,18]. The original Phase 1 release of
1000 Genomes reference panel used for imputation contained ~38
million single nucleotide variants (SNVs). After removing the sin-
gletons and monomorphic sites and merging the typed and
imputed data, 27,449,496 variants on 821 participants were avail-
able for the genome-wide association study. We subsequently
removed SNPs with poor imputation quality (r? < 0.3) or MAF<0.01,
yielding 9,432,837 variants. Of all genotyped participants, 626 had
valid TMAO measurements and were included in the analysis.

2.5. Statistical analysis

We used Kruskal-Wallis rank sum tests to evaluate trends in
demographic and clinical characteristics across quartiles of the
untransformed TMAO distribution. For subsequent analyses, we
log-transformed the TMAO variable to achieve normality. We
estimated heritability of TMAO in GOLDN using the variance
component approach implemented in the SOLAR program as pre-
viously described [19]. All models run in SOLAR included age and
sex. For the genome- and epigenome-wide analyses, we used
normal inverse transformed residuals obtained by regressing log-
transformed TMAO on age and sex. We assessed epigenome-wide
associations between TMAO residuals and DNA methylation vari-
ants using linear mixed models, adjusted for age, sex, center, and
four principal components capturing T-cell purity as fixed effects

and pedigree as a random effect [20]. We conducted sensitivity
analyses, additionally adjusting for current smoking and alcohol
intake. For genome-wide associations, we fit linear mixed models,
adjusting for only pedigree (random effect) as well as age, sex, and
center (fixed effects) because there was no evidence of confounding
by population stratification in the genetically homogeneous GOLDN
populations. We used HaploReg (Broad Institute, Cambridge, MA)
to investigate the functional annotation of the top signal from the
genome-wide study. Furthermore, we interrogated top genetic and
epigenetic signals for potential overlap with other functional marks
(e.g. histone modifications) or gene expression in biologically
relevant tissues, e.g. liver and the gastrointestinal tract, using
publicly available bioinformatics resources implemented in the
UCSC Genome Browser. Statistical significance was assessed at the
Bonferroni corrected thresholds of 0.05/9,432,837 = 5.3 x 10~? and
0.05/463,995 = 1.1 x 107 for the genome- and epigenome-wide
studies, respectively. All genome- and epigenome-wide analyses
were implemented in R, using the Imekin function in the kinship
package to adjust for family relationships. We estimated genomic
control parameters (A) at 1.01 and 117 for the genome- and
epigenome-wide analyses, respectively. We constructed quantile-
quantile (Supplemental Figs. 1 and 2) and Manhattan (Figs. 1 and
2) plots to visualize the results.

We estimated statistical power a priori using a combination of
computer simulation and asymptotic distributions and a pedigree
structure identical to GOLDN. We generated CpG methylation
proportions with varying heritability and phenotypic data for each
individual in the pedigree. For the epigenome-wide study, our
simulations project the statistical power ranging from 0.71 for
h2jocus = 0.02 to 1.00 for h%peus = 0.05 or above—a realistic
assumption given methylation heritabilities as high as 0.6 previ-
ously observed in our epigenetic data [21]. For the genome-wide
association analysis, we had sufficient statistical power to detect
the effect of SNPs with moderate heritability at the 5.3 x 1072 (0.05/
9,432,837 variants) significance level: from 0.89 to detect at least 3
of 10 causal loci for h%jgeys = 0.05 to 0.92 to detect all 10 causal loci
for h%jpcus = 0.10.

3. Results

Clinical, demographic, and lifestyle characteristics by quartile of
TMAQO are summarized in Table 1. Circulating TMAO levels exhibi-
ted a strong positive association with age and weaker associations
with sex (fewer women were represented in higher quartiles),
hypertension, plasma triglycerides, and diabetes status. Adjust-
ment for age (data not shown) rendered all observed associations
statistically insignificant. Other risk factors for chronic disease,
including intake of animal products, were not associated with
circulating TMAO in the GOLDN population.

We estimated circulating TMAO to be moderately heritable
(h? = 0.27, P-value = 3 x 107%). We present the results of the
epigenome-wide association study in Table 2 and Fig. 1 and the
results of the genome-wide association study in Table 3 and Fig. 2.
Only one SNP and no CpG loci reached genome-wide significance in
our population. Notably, the top genome-wide association hits,
including the significant locus rs114755225 on chromosome 4,
were mostly rare variants (MAF <0.05). We reached out to several
TMAO studies to attempt replication, however, neither
rs114755225 nor its proxies were available in other populations.
Subsequent lookup of previously suggested” TMAO candidate re-
gions (the FMO cluster, 1g23.3, and 2p12) in genetic and epigenetic
results from GOLDN failed to uncover any significant associations.
There was no notable overlap in genomic position between top SNP
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Fig. 1. Manhattan plot of epigenome-wide results of testing for association between methylation at > 450,000 cytosine-phosphate-guanine sites and circulating trimethylamine-N-
oxide. The X-axis displays the chromosome on which the site is located, the Y-axes display —log;o(P-value). The red horizontal line indicates the threshold for epigenome-wide
statistical significance after a Bonferroni correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Manhattan plot of genome-wide results of testing for association between >9,400,000 genetic variants and circulating trimethylamine-N-oxide. The X-axis displays the
chromosome on which the site is located, the Y-axes display —logo(P-value). The red horizontal line indicates the threshold for genome-wide statistical significance after a
Bonferroni correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Characteristics of the GOLDN study population (n = 944) by quartiles of TMAO levels.*®
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile P-value for Trend
Median TMAO, uM 1.43 243 439 10.475 22 x1071°
Range, uM 1.43-1.70 1.71-3.24 3.25—-6.06 6.08—42.31
Age, years 45 + 14 48 + 17 51+ 16 51 +17 1.5 x 1077
Sex, n (%) female 141 (59.7) 113 (47.9) 105 (44.4) 102 (43.2) 0.002
Smoker, n (%) current 20 (8.47) 15 (6.36) 20 (8.47) 17 (7.2) 0.78
Body mass index, kg/m2 28 +6 28+5 28+6 29+6 0.22
Hypertension, n (%) 49 (21) 57 (24) 62 (26) 78 (33) 0.02
Cholesterol, mg/dl
Low-density lipoprotein 117 £ 29 124 + 32 123 + 34 123 + 30 0.07
High-density lipoprotein 48 + 13 46 + 12 46 + 13 48 + 14 0.19
Triglycerides, mg/dl 121+ 73 140 + 85 140 + 87 148 + 128 0.02
C-reactive protein, mg/dl 0.23 +0.33 0.20 + 0.31 0.27 + 0.69 0.27 +0.35 0.22
Diabetes, n (%) 14 (6) 20 (8) 12 (5) 28 (12) 0.03
Intake of animal products, “servings/day 7+5 8+5 8+5 8+5 0.39

2 TMAO, trimethylamine-N-oxide.

b We present continuous variables other than TMAO quartile medians as means (standard deviations) and categorical variables as absolute numbers (percentages of total
sample).

¢ Includes eggs, beef, pork, lamb, poultry, fish, and other seafood.

and CpG site signals. investigation of genetic and epigenetic determinants of TMAO in
humans. Despite evidence of significant heritability, we did not
identify either DNA sequence variants or methylation markers that
significantly contribute to circulating TMAO levels. Interestingly,
we also did not replicate known associations between circulating

4. Discussion

We conducted the first family-based, population-level
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Table 2

Top epigenome-wide associations for circulating TMAO in GOLDN (n = 847).%
Marker Chromosome Region Gene B+ SE P-value
cg08040395 17 - ENGASE 0.01 + 0.002 22 %107
cg19731194 1 - Intergenic 0.01 + 0.002 8.8 x 1076
cg21066735 11 Island Intergenic 0.002 + 0.0004 1.3 x 107
cg00089486 3 South Shore SHOX2 0.003 + 0.0007 1.6 x 107°
cg01515960 19 Island Intergenic 0.01 + 0.003 1.6 x 107>
cg25778892 7 North Shore Intergenic 0.01 + 0.002 2.0 x 1073
cg27427369 2 South Shelf ERLECT; LOC10030265 —0.003 + 0.0006 2.8 x 1073
cg01767862 14 - SNORD114-28 —0.003 + 0.0008 3.6 x 107°
cg00810908 3 Island FBLN2 0.002 + 0.0004 3.7 x 107°
cg08055924 4 Island MIR574; FAM114A1 0.003 + 0.0008 44 x107°
2 TMAO, trimethylamine-N-oxide.

Table 3

Top genome-wide associations for circulating TMAO in GOLDN (n = 626).°
SNP Chromosome Gene Minor Allele Frequency B+ SE P-value
rs114755225 4 Intergenic 0.02 -1.20 £ 0.20 3.1 x107°
rs148553452 1 EYA3 0.01 -1.70 £ 0.31 4.4 x 1078
rs146552658 1 EYA3 0.01 -1.69 + 0.31 56 x 1078
rs114145653 1 PHACTR4 0.01 ~1.89 + 034 7.0 x 1078
rs148992889 1 EYA3 0.01 —1.63 + 0.30 7.1 x 1078
rs75116832 17 UBE2G1 0.01 -1.82 +£0.34 8.6 x 1078
rs143831173 6 Intergenic 0.03 —0.89 +0.17 2.5 x 1077
rs114858855 6 Intergenic 0.03 —0.89 + 0.17 25 x 1077
1s6557607 8 RHOBTB2 0.06 —0.66 + 0.13 26 x 1077
rs143482172 9 MOB3B 0.01 -1.57 + 0.30 3.0 x 1077
rs58180025 6 Intergenic 0.04 —0.87 £ 0.17 34 x 1077
rs138865076 6 Intergenic 0.04 —0.87 £ 0.17 3.5 x 1077
rs146839869 6 ENPP4 0.01 -1.39 £ 0.27 35 x 1077
rs75363923 6 Intergenic 0.01 -1.56 + 0.30 3.8 x 1077

2 TMADO, trimethylamine-N-oxide.

TMAO and other cardiovascular risk factors, or consumption of
animal products. The observed lack of association between diet and
plasma TMAO contrasts other studies linking intake of meat, sea-
food, dairy, and eggs to elevated levels of atherogenic metabolites
[2,22—24]. As most studies used similar TMAO measurement pro-
tocols, reasons for this discrepancy may include differences in
habitual dietary patterns, cohort composition, or diet ascertain-
ment methods. Specifically, dietary variation in GOLDN participants
was quite limited (e.g. there were few vegetarians), we did not have
sufficient power to explore potential modifying effects of the
habitual diet. Furthermore, because TMAO is synthesized by gut
microbiota, it is also likely that the metagenomic composition of
the participants was both influenced by habitual diet and impacted
circulating TMAO levels, confounding the observed relationships.
Prior studies reported no associations between common genetic
variation and plasma TMAO in humans [7]. The enrichment of top
SNP signals for rare variants in the GOLDN data, however, may offer
a clue to the genetic architecture of circulating TMAO. To date, the
only validated genetic determinant of TMAO in humans is a cluster
of rare missense mutations in the FMO3 gene, which has been
linked to the ‘fish odor syndrome’ (trimethylaminuria) in several
families [25]. It is possible that other rare variants also contribute to
circulating TMAO, accounting for at least part of the observed
heritability. We present preliminary evidence implicating one such
variant, rs114755225 on chromosome 4, in TMAO homeostasis. The
1rs114755225 polymorphism is located in the intergenic region and
has not been previously linked to physiological traits. While bio-
informatic analyses suggest colocalization of rs114755225 with a
H3K4me3 promoter peak in duodenum cells, the interpretation of

this finding is challenged by the lack of nearby genes. Future rare
variant studies are warranted to validate our preliminary finding
and potentially identify novel rare mutations with functional
relevance to the TMAO metabolic pathway. One potential region for
follow-up investigation is the EYA3 gene, implicated in circadian
functioning and represented among our top, albeit not statistically
significant GWAS findings; a recent report found relationships be-
tween circadian rhythms and urinary TMAO concentrations [26].
We also hypothesized that genome-wide DNA methylation
patterns, which reflect inputs from both sequence variation and
environment (particularly diet), may be associated with plasma
TMAO in humans. We did not find support for our hypothesis in the
GOLDN cohort. There are several potential explanations for the
observed null associations. First, the Illumina Human-
Methylation450 array covers a limited portion of the genome, with
a bias towards coding and promoter regions; future investigations
using bisulfite sequencing or recently developed higher resolution
methylation arrays may uncover novel signals of interest. Second,
the overall associations may be obscured by confounding factors
such as smoking or alcohol intake. However, sensitivity analyses
(data not shown) adjusting for both lifestyle variables did not
appreciably alter our results. Third, it is possible that the assump-
tions of methylation site heritability underlying our statistical po-
wer calculations were violated in our data, resulting in suboptimal
ability to detect any effects. Fourth, the choice of tissue (blood,
specifically CD4" T-cells) may not be optimal for capturing the
epigenetic correlates of TMAO metabolism. Originally, CD4™ T-cells
were selected for quantifying epigenetic patterns in GOLDN due to
their 1) role in the inflammatory processes and thus
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cardiometabolic disease, 2) availability (CD4" T-cells are the most
abundant lymphocyte in the blood), and 3) control of confounding
by cell or tissue type compared to whole blood samples. Despite the
relevance of CD4™" T-cells, the lack of liver tissue samples or other
more proximal biological tissues is a clear limitation of our study,
we have supplemented insights obtained from CD4™" T-cells with
lookups of the same variants in other tissues using public data-
bases. Finally, other factors—most importantly the gut microbiota
composition—may represent stronger determinants of circulating
TMAO than either DNA sequence or methylation variants. Future
studies of inter-individual variability in diet-derived metabolites
would benefit from incorporating metagenomic data in their
approach, ideally integrating it with other —omics layers for a
comprehensive picture of TMAO metabolism in humans.
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