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Mitochondria-endoplasmic reticulum (ER) contacts (MERCs) are sites at which the outer

mitochondria membrane and the Endoplasmic Reticulum surface run in parallel at

a constant distance. The juxtaposition between these organelles determines several

intracellular processes such as to name a few, Ca2+ and lipid homeostasis or autophagy.

These specific tasks can be exploited thanks to the enrichment (or re-localization) of

dedicated proteins at these interfaces. Recent proteomic studies highlight the tissue

specific composition of MERCs, but the overall mechanisms that control MERCs

plasticity remains unclear. Understanding how proteins are targeted at these sites seems

pivotal to clarify such contextual function of MERCs. This review aims to summarize the

current knowledge on protein localization at MERCs and the possible contribution of the

mislocalization of MERCs components to human disorders.

Keywords: mitochondria-ER contact sites, protein targeting, post-translational modifications, lipid rafts, ER stress

INTRODUCTION

The term “synapse” refers to a site at which two neurons are close enough to communicate to
each other. Here, electrical or chemical signals are integrated to determine specific responses,
such as the generation of action potentials. The concept of synapse and synaptic integration can
be extended to other cells. For example, immunological synapses have been defined for T cells
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ER-associated degradation; ERMES, endoplasmic reticulum (ER)-mitochondria encounter structure; FACL4, fatty acid-
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(Norcross, 1984; Paul and Seder, 1994; Grakoui et al., 1999;
Bromley et al., 2001; Viola et al., 2010): these are the sites at
which signaling cascades originating from T cell Receptors are
ultimately “decoded and integrated” to achieve either activation
or tolerance.

This concept can be further extended to contact sites between
intracellular compartments such as those amongst mitochondria
and Endoplasmic Reticulum (ER). Mitochondria-ER contacts
(MERCs) are sites in which the surfaces of the two organelles
juxtapose at a constant distance, for several nm in length.
These contacts can be isolated through subcellular fractionation
procedures and the membrane fraction corresponding to
the MERCs is known as MAMs (mitochondria associated
membranes; Vance, 1990; Rusiñol et al., 1994). Thus, MAMs
are the biochemical counterpart of MERCs (Giacomello and
Pellegrini, 2016).

Cues comprising information from cell growth signaling,
metabolic, and stress-responsive programmes are integrated at
MERCs, determining cell wellbeing/homeostasis. Therefore, it is
not surprising that the disruption of MERCs has been associated
with an ever-growing number of pathologies, as an element
contributing to the propagation of functional imbalances across
cellular systems—such as lipid imbalance and insulin resistant
states (Arruda et al., 2014).

MERCs-associated functions, composition, and extension
seem to be tailored to specialized tissues- further stressing
their relevance for the fine tuning and integration of multiple
functions. But how are MERCs defined and how is their
specific composition dictated? Viola et al. (2010) proposed
that integration of different signaling steps may promote the
rearrangement of lipids within membranes, thus providing
specialized platforms at which signals can be generated,
amplified, or even blunted. Whether this principle applies to
MERCs is a standing question to explore. The latter have been
already shown to have “lipid raft”-like properties (Hayashi and
Fujimoto, 2010; Area-Gomez et al., 2012), although this aspect
needs further clarification. Besides “raft”-like domains, MERCs
are characterized by the presence of proteins that either tether the
two organelles together or dictate their biological function. These
“molecular bridges” appear as electron dense rods in EM images
(Csordás et al., 2006). Among the potential tethers identified
to date, the most studied in higher eukaryotes is Mitofusin2
(Mfn2), first discovered as a key factor for mitochondrial fusion
(Chen et al., 2003). Its presence at the surface of the ER and
the evidence that ER-located Mfn2 binds to the OMM located
Mfn2 and Mfn1 (de Brito and Scorrano, 2008; Naon et al., 2016)
strongly suggested its involvement in the control of MERCs.
Another key protein required for MERCs assembly and activity
is PhosphoAcidic Cluster Sorting protein 2 (PACS2; Simmen
et al., 2005): its ablation decreases the interaction between the
two organelles and the activities of the MAMs resident proteins
phosphatidyl serine synthase 1 (PSS1) and long-chain fatty
acid acetyl-CoA synthase (ACSL4; Piccini et al., 1998; Simmen
et al., 2005). A third tethering complex proposed for higher
eukaryotes includes the integral ER protein Vesicle-Associated
membrane Protein associated protein B (VAPB) and the OMM
Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51).

Interestingly, the VAPB-PTPIP51 tethering complex negatively
controls autophagy and is dysregulated in frontotemporal
dementia (De Vos et al., 2012; Stoica et al., 2014; Gomez-Suaga
et al., 2017).

Although these (and others, for a detailed list please refer
to Table 1, and to: Area-Gomez et al., 2012; De Mario et al.,
2016) structural components of MERCs have been uncovered,
it is nowadays clear that MERCs display cell-specific tissue
composition, as highlighted by a number of proteomic analyses
(Poston et al., 2011; Horner et al., 2015; Liu et al., 2015; Sala-
Vila et al., 2016). While the interest on the biology of MERCs
has recently soared, further systematic studies are required to get
a complete view of the MERCs toolkit.

Notably, while proteins involved in the maintenance of lipid
and Ca2+ homeostasis can be retrieved at MERCs in basal
conditions, some proteins enrich in these sub-compartments
only upon stimulation. Thus, MERCs, similarly to membrane
rafts, function as platforms for composite signal transduction
complexes. How proteins are recruited to these “biological
interfaces” and retained there still needs to be clarified and
is fundamental to understand MERCs physiological role. This
review focuses on this aspect, and aims to highlight the principles
determining protein enrichment/translocation at MERCs.

MERCs FUNCTIONS AT A GLANCE

As stated above, mitochondria-ER contact sites (MERCs) appear
in electron microscopy (EM) as the parallel juxtaposition of the
ER surface to the Outer Mitochondrial Membrane (OMM), at a
distance ranging from 10 to 80 nm (Giacomello and Pellegrini,
2016). The length and width of the cleft separating both
organelles and the protein composition of the communicating
membranes are strictly bound to the processes in which MERCs
are involved (summarized in Table 1). A number of recent
reviews have already summarized in detail the role of MERCs
in different subcellular pathways (Rowland and Voeltz, 2012;
De Mario et al., 2016; Eisenberg-Bord et al., 2016; Prudent and
McBride, 2017). Here, we will just provide a quick overview of
the main MERCs functions.

The most established roles of MERCs pertain to their
contribution to lipid and Ca2+ handling. Almost three decades
ago, (Vance, 1990) highlighted the importance ofMERCs for lipid
homeostasis. Indeed these contact sites shape the specific route
for phospholipid interconversion, allowing for the synthesis
of phosphatidylethanolamine and phosphatidylcholine from
serine and contributing to the composition of mitochondrial
membranes (Rusiñol et al., 1994; Vance, 2014). These MERCs-
associated routes may turn essential under restrictive conditions
such as ethanolamine deficiency (Flis and Daum, 2013).
Notably while the synthesis of cholesterol and its precursors,
minoritary components of the OMM, is located at the ER,
they can be converted into other molecules such as steroid
hormones in MAMs (Bosch et al., 2011b; Sala-Vila et al., 2016).
Thus, mitochondria-ER contacts appear as the sites at which
coordination among lipid homeostasis and other cell functions
occurs.
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TABLE 1 | Overview of the main MERCs functions and actors.

MERCs Function MERCs main players

(gene symbol)

References

Ca2+ homeostasis ATP2A1 Chami et al., 2008

HSPA5 Hayashi and Su, 2007

HSPA9 Szabadkai et al., 2006

ITPR Szabadkai et al., 2006

MFN2 de Brito and Scorrano, 2008

PSEN2 Zampese et al., 2011

PTPIP51 Stoica et al., 2014

SYGMAR1 Hayashi and Su, 2007

VDAC Szabadkai et al., 2006

Lipid homeostasis ACAT1 Rusiñol et al., 1994

CAV1 Sala-Vila et al., 2016

ERLIN 2 Browman et al., 2006

FACL4 Lewin et al., 2001

OSBPL Galmes et al., 2016

PEMT Cui et al., 1993

PTDSS1-2 Stone and Vance, 2000

REEP1 Cajigas et al., 2012

SERAC1 Wortmann et al., 2012

STX17 Hamasaki et al., 2013

SYGMAR1 Hayashi and Su, 2007

VAPB Stoica et al., 2014

Mitochondrial dynamics DNM1L Friedman et al., 2011

FIS1 Iwasawa et al., 2011

FUNDC1 Wu et al., 2016

MARCH5 Sugiura et al., 2013

MFF Elgass et al., 2015

MFN2 de Brito and Scorrano, 2008

MIEF1 Elgass et al., 2015

MIEF2 Elgass et al., 2015

PACS2 Simmen et al., 2005

Autophagy/mitophagy AKT Betz et al., 2013

ATG5 Hamasaki et al., 2013

ATG14L Hamasaki et al., 2013

FUNDC1 Wu et al., 2016

MTOR Betz et al., 2013

PARK2 Calì et al., 2013

PINK1 Cajigas et al., 2012

STX17

ZFYVE1

Hamasaki et al., 2013

Hamasaki et al., 2013

Immune response NLRP3 Zhou et al., 2011

p66Shc Lebiedzinska et al., 2009

PML Giorgi et al., 2010

PTEN Bononi et al., 2013

PTPIP5 Stoica et al., 2014

PYCARD Zhou et al., 2011

RAB32 Bui et al., 2010

TXNIP Zhou et al., 2011

ER homeostasis ERN1 Mori et al., 2013

SIGMAR1 Hayashi and Su, 2007

EIF2AK3 Verfaillie et al., 2012

CANX Myhill et al., 2008

ERO1A Gilady et al., 2010

MERCs are also the site of Ca2+ exchange between the
two organelles: they host a protein complex composed of the
inositol triphosphate receptor (IP3R), the voltage-dependent
anion channel (VDAC) and the chaperone grp75 (Szabadkai
et al., 2006), which allows for rapid mitochondrial Ca2+ uptake
through the Ca2+ Uniporter. The efficient shuttling of Ca2+

between both organelles depends on the width of the cleft that
separates them: an optimal length of 15–25 nm allows both the
assembly of the IP3R-grp75-VDAC complex and a fast Ca2+

exchange; on the contrary, a distance below 10 nm impedes
the formation of the complex due to steric hindrance (Csordás
et al., 2006). On the other hand, a distance above 25 nm would
decrease the Ca2+ diffusion rate and hence blunt mitochondria
Ca2+ uptake (Giacomello and Pellegrini, 2016). Mitochondral
Ca2+ levels impinge on the activity of pyruvate, isocitrate, and
α-ketoglutarate dehydrogenases (Denton et al., 1972, 1978), and
hence on cell bioenergetics (Cárdenas et al., 2010). On the other
hand, if pronounced, a sustained mitochondrial Ca2+ uptake
can be read as a cell death signal able to trigger permeability of
the mitochondrial membranes and opening of the permeability
transition pore (PTP) (Bernardi et al., 2001; Hurst et al., 2017).
Thus, MERCs also contribute to determine the cell fate (Simmen
et al., 2005; Bui et al., 2010; Iwasawa et al., 2011; Prudent and
McBride, 2017).

More recently, a bunch of additional functions have been
ascribed to MERCs. For example they have been proposed
as the site of autophagosome formation, thus playing a key
role in autophagy (Hamasaki et al., 2013; Martínez-Pizarro
et al., 2016). MERCs appear to couple mtDNA synthesis with
mitochondrial division, that is also regulated by the interaction
between mitochondria and ER (Friedman et al., 2011; Elgass
et al., 2015; Lewis et al., 2016), and can behave as a scaffold
that ultimately coordinates immune signaling and inflammasome
formation (Lerner et al., 2012; Horner et al., 2015).

Finally, in yeast, mitochondria-ER interaction appears also
fundamental for appropriate maintenance of cellular iron
homeostasis and mitochondrial biogenesis (Wu et al., 2016;
Ellenrieder et al., 2017; Xue et al., 2017).

SUBCELLULAR LOCALIZATION:
TARGETING SEQUENCES AND MORE

Protein subcellular distribution relies on several mechanisms
(Figure 1). The most common is the presence of a targeting
peptide within the protein, which determines its sorting to
specific sites. Two questions must be considered in this case:
whether specialized or “consensus”-based mechanisms exist, and
whether they are subjected to regulation.

So far a robust consensus motif targeting proteins to
MERCs has not been defined. Localization at the OMM or
ER surface appears sufficient for a protein to be retrieved at
MAMs, in a proportion that varies depending on the cell type,
culture conditions, oxidation state, or specific metabolic status
of the cell. For example, ∼90% of the chaperone calnexin
(CNX) is homogenously spread in the ER in basal conditions,
concentrating at MERCs up to 70% under specific (stress) stimuli
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FIGURE 1 | Schematic of subcellular mechanisms for protein targeting at MERCs. Enrichment at mitochondria-ER interface can be achieved through classical

targeting sequences (A); post-translational modifications such as phosphorylation, acetylation or sumoylation (B); conformational targeting (C), localization signal

receptors (D), geometric protein localization (E) and localized synthesis (F).

(Lynes et al., 2012). To date, only a few putativeMERCs-targeting
signals have been identified: this is the case for example of
a stretch of 67 aa in the cytoplasmic N-terminus of DGAT2
(Stone et al., 2009). Another peculiar motif resides in the
transmembrane and cytosolic domains of the transmembrane
thioredoxin protein TMX, which are “necessary and sufficient”
to ensure TMX accumulation at MAMs (Lynes et al., 2012).
As stated above, a unique MERCs-targeting motif has not
been identified yet. This could depend on the requirement of
post-translational modifications (PTMs) and/or conformational
determinants. PTMs as mechanisms for the regulated targeting
of proteins atMERCs will be discussed separately in the following
section, since a number of evidence substantiating this possibility
have been already reported. Anothermechanism both hampering
the identification of “consensus target motifs” and rendering
“alternative compartmentalization” possible might reside in
mRNA processing. This remains still a hypothesis, since evidence
for the existence of alternative splicing programmes dictating
protein localization at MERCs is still lacking.

Another hypothetical MERCs-targeting mechanism would be
the existence of “conformational” motifs. That is, a domain
composed not by a linear stretch of amino acid, but by a
functional interaction surface determined by the rearrangement
of the 3D structure of the protein. The possibility of a
“conformational” domain appears particularly intriguing for
MERCs, since it would provide amean for switchable recruitment
of proteins. If this possibility holds true, it would perfectly
match with the highly plastic lipid environment of MERCs. In

fact, one of the means for PTMs-regulated targeting to MERCs
might rely on such conditional conformational state (see below).
Molecular threading for “tridimensional alignment” has been
classically very challenging in terms of computational power
requirements, but recent advances may ease these approaches to
study conformational MERCs-targeting domains.

Another widespread mechanism for regulated protein
compartmentalization relies on masking of localization domains:
interaction with other partner molecules may confine them into
the cytosol or other subdomains. This mechanism usually keeps
“silent” (i.e., inactive) a certain protein until its release, which
induces its re-localization at sites where specific interacting
partners and/or target functions are (Bauer et al., 2015).
Theoretically the concept of domain masking could be extended
also to MERCs: targeting motifs would be exposed only if the
specific function of the protein of interest is needed at these sites.

Subcellular targeting relies also on appropriate “localization
signal receptors” (Bauer et al., 2015). This term denotes the
presence of a sequestering/scaffolding protein able to bind its
ligand and restrict its diffusion. Sequestration of a protein
implies that the density of binding sites within a subcellular
domain is high enough to significantly limit its mobility toward
other locations. Interestingly, the affinity of a localization signal
for its receptor can be modulated, especially through PTMs
such as phosphorylation, lysine acetylation, or SUMOylation
of either the receptor or of the ligand. Changes in the
affinity of this interaction can either increase or decrease
the compartmentalization of the ligand, by unveiling or,
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alternatively by masking, any signaling peptide. Thus, PTMs
would exert their function not only by modulating the activity
of proteins, but also by controlling their localization. As a
consequence, they can shape the composition (and hence
the function) of subcellular compartments. As to MERCs, an
example of localization signal receptor is PACS2, which mediates
the localization and enrichment of the CNX at these sites
(Myhill et al., 2008). It is interesting to note that not only
proteins, but also lipids and phospholipids could behave as
localization receptors. For example, it has been shown that
phosphatidylinositol (3,5) diphosphate can act as a membrane-
targeting molecule, mediating the binding of different proteins
to biological membranes (Ferguson et al., 2009; Salminen et al.,
2013). Due to the special lipid composition of MERCs, we further
elaborate in a separate section on this topic (see below).

Another common protein targeting strategy is “localized
synthesis” (Kejiou and Palazzo, 2017). mRNAs encoding for a
given polypeptide can be localized to specific subcellular domains
where they are either kept silent, waiting for specific stimuli to
trigger translation, or efficiently translated if necessary in basal
conditions (Kejiou and Palazzo, 2017). Classical examples of
spatial protein segregation by localized synthesis can be found
in neurons (Rangaraju et al., 2017). Here, localized production
is required to quickly shape the response of neurites to the
signals coming from synapses. Interestingly, a study conducted
to describe the local transcriptome in the synaptic neuropil of
CAI Hippocampus (i.e., the mRNA enriched in this specific
cell subdomain) highlighted the presence of MERCs resident or
regulatory proteins, among which also calnexin, mTOR, Pink1,
presenilin2, REEP1, Sigma-1 Receptor, α-synuclein, VAPB (Table
S10 of Cajigas et al., 2012). These data support the hypothesis that
local translation also contributes to the plasticity of MERCs, that
with their activity could in turn match the needs of specialized
cell structures.

Finally it’s worth mentioning two additional mechanisms,
although yet unproven for protein targeting at MERCs. A
first one has been termed “geometric protein localization”
(Ramamurthi et al., 2009; Updegrove and Ramamurthi, 2017).
Mostly studied in bacteria, it relies on the ability of some
proteins to “sense” membrane curvature and bind to specific
geometric cues. In this case protein localization will be dictated
by the shape of the membrane, independently of its composition
(Hatzakis et al., 2009; Bhatia et al., 2010). These proteins are
often characterized by membrane-binding amphipathic helices
(Updegrove and Ramamurthi, 2017) that recognize even small
changes in the curvature of membranes and enrich at these
special sites. Interestingly, some curvature-sensing proteins have
been reported in eukaryotes: this is the case of dynamins
(Ramachandran and Schmid, 2008), cytochrome b5 (Taylor and
Roseman, 1995), and interestingly, the ER stress-transducer
IRE1 (Halbleib et al., 2017; see below). Recently, it was also
reported that membrane-anchored proteins can efficiently sense
membrane curvature, the latter being an additional mechanism
for their efficient clustering (Hatzakis et al., 2009). As to MERCs,
so far they have been characterized and described according to
specific parameters: the relative length of the ER surface portion
that run in parallel to the OMM and the width of the cleft

that separates the two organelles (Giacomello and Pellegrini,
2016). Whether they are characterized by a particular membrane
curvature range remains, at least to our knowledge, to be defined.
The study of “geometric protein localization” at MERCs remains
also challenged by the lack of appropriate readouts, compatible
with the manipulation of such properties specifically at those
sites.

The second mechanism, already shown to operate in the
context of ER segregation and partitioning in yeast, pertains to
the establishment of “protein boundaries” able to restrict the
lateral diffusion of other membrane components (Chao et al.,
2014). In this case, cytoskeleton-associated proteins (septins)
are the effectors of such compartmentalization. Intriguingly,
MERCs constitute in some experimental models points for actin-
and microtubule-assisted mitochondrial fission (Ji et al., 2015;
Prudent and McBride, 2016). So far, no clear connection has
been established between MERC composition and cytoskeletal
components, nor septins.

POST-TRANSLATIONAL MODIFICATION:
“LOCALIZATION” OR “RELOCATION” AT
MERCs?

PTMs are normally used by the cell to modulate the activity,
stability, interaction profile and/or subcellular segregation of
proteins. MERCs components are no exception: substantial
evidence exists for multiple PTMs fine-tuning their properties,
including their localization. As such, most MERCs proteins
subjected to PTMs are characterized by (at least) a dual
localization: either they have a broad subcellular distribution (for
example, at the cytosol, or at the ER, or at the OMM), and then
they enrich at MAMs, or the reverse (i.e., they appear located at
MERCs, and upon PTMs, they redistribute to other subcellular
compartments).

The first possibility applies to CNX. Its binding to PACS2
appears not sufficient for its enrichment at MERCs (Myhill et al.,
2008), palmitoylation being the additional trigger necessary for
its complete relocation at these interfaces (Lynes and Simmen,
2011). Examples have also been described for the second
scenario. Impairment of ER oxidizing conditions causes Ero1α
to lose its MAMs localization (Gilady et al., 2010), while heme
oxygenase-1 relocates fromMAMs to rough ER in the absence of
palmitoylation (Lynes and Simmen, 2011). Another example is
N-myristoylation: when the carbohydrate-binding protein starch
binding domain-containing protein 1 (Stbd1) undergoes this
modification, it is mostly retrieved on the ER, its wild type
form being on the contrary enriched at MAMs “by default”
(Demetriadou et al., 2017).

Generally speaking, PTMs also represent a switch for
the activity of several enzymes. Thus, PTMs might control
MERCs activity in a dual fashion: on one side, through
a modulatory function, by directly enhancing or decreasing
the activity of a MERCs-resident enzyme; on the other, by
enhancing the contribution of MERCs to a subcellular process
through re- or delocalization of specific proteins. Transient
PTMs-dependent recruitment at MERCs may explain, at least
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in part, why changes in the expression levels of some
proteins have a profound effect on ER-mitochondria apposition,
despite they are not enriched in purified MAM fractions
(Wieckowski et al., 2009; Eisenberg-Bord et al., 2016; Naon
et al., 2016). Such an example has recently been reported
for a novel OMM-ER tethering complex composed by two
proteins broadly distributed to the OMM and ER surface:
SYNJ2BP and RRBP1 (Hung et al., 2017). These data support
the hypothesis of “auxiliary tethers,” according to which some
proteins would not be strictly necessary to form a (functional)
contact site, but they would be able to do so whenever their
MERCs-related function was needed (Eisenberg-Bord et al.,
2016).

“LIPID RAFT”-LIKE BEHAVIOR AS A
MECHANISM FOR
COMPARTMENTALIZATION AT MERCs

Another layer for regulating MERCs compartmentalization
comes from the distinct lipid composition of the membrane
domains delimiting MERCs (Figure 2). The concept of
dynamic membrane nanodomains or “lipid rafts” initially
introduced by Simons and van Meer (1988) almost 30
years ago states that one of the key properties of such
membrane patches is the efficient accruing and stabilization of

transmembrane proteins and membrane-associated activities
(Simons and Sampaio, 2011). Correspondences between
mitochondria-ER contacts and generic lipid rafts have been
highlighted (Area-Gomez et al., 2012; Annunziata et al., 2013):
MAMs have a significantly higher content in cholesterol
and sphingolipids as compared with bulk ER membranes
(Annunziata et al., 2013; Vance, 2014; Sala-Vila et al.,
2016); they seem to have a lower degree on curvature as
compared with surrounding ER regions (Rowland and Voeltz,
2012).

The “lipid raft”-like organization of MERCs could help to
explain some of their properties and functions. As mentioned
above, it would induce the stabilization and limitation of lateral
diffusion of ensembles ofmembrane proteins, or “polarization”—
a property that would benefit the initial localization and
subsequent sequential assembly of tethering complexes. The full
collection of MERCs components in higher eukaryotes remains
to be listed, but certain properties of the better-defined tethering
complexes in yeast (termed ERMES) support this concept. First,
ERMES components exhibit aberrant distribution if expressed
in the absence of their partners (Kornmann et al., 2009, 2011;
Stroud et al., 2011). Second, analysis of their structure revealed
that their membrane-binding domains are fully functional only
if they form complexes with appropriate stoichiometry, and only
in this case they can recognize organelle contact sites. Thus, it
seems that (a) MERCs lipid composition is an essential, but not a

FIGURE 2 | Cartoon summarizing aspects pertaining to the organization of “nanodomains” on membranes, and their potential effects regarding recruitment of specific

activities. “Lipid raft”-like domains may be stabilized by specialized membrane-binding proteins, such as caveolins (A), and/or through directional local synthesis and

accumulation of specific lipid species (B). The subsequent definition of such membrane nanodomains may preclude lateral diffusion of specific transmembrane

proteins (C), and or act as “molecular beacons” for the specific recruitment of proteins (D).
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sufficient, feature to ensureMERCs targeting; and (b) cooperative
recruitment may ensure the regulated, reversible assembly
of tethering complexes. The differential lipid composition of
MERCs appears critical for the targeting of specific proteins
to this subcellular compartment in higher eukaryotes, a major
example being constituted by the Prion protein (PrPC). While in
basal conditions PrPC localizes mostly at the plasma membrane,
pro-apoptotic stimuli can induce its relocalization to the MAMs,
transducing a pro-death signal from the surface into the cell
(Mattei et al., 2011).

Local synthesis and modification of lipids are hallmarks of
lipid rafts. These have been proposed as potential mechanisms
for the formation and stabilization of these nanodomains: a
directional flux of specific lipid building blocks might favor
per se the establishment of regions characterized by differential
composition (Simons and Sampaio, 2011). A major subset of
processes enabled by MERCs comprises lipid anabolism and
trans-organelle transport of lipids (a classical example being
phospholipids, see above). Furthermore, recent surveys highlight
the enrichment of lipid metabolism functions at MERCs,
including cholesterol synthesis and modification and fatty acid
catabolism (Sala-Vila et al., 2016). A still open question is
whether such local lipid metabolism sustains the differential
composition of MERCs or not. Intriguingly, and further related
to these observations, membrane proteins typically ascribed
as lipid raft scaffolds/organizers, such as caveolin-1 (Cav1)
are specifically enriched at MERCs. Cav1 is a cholesterol-
binding protein famous for its role as an essential scaffold of
plasma membrane nanodomains named caveolae (Parton and
del Pozo, 2013). However, Cav1 also assembles in oligomers in
the ER and determines cholesterol trafficking across subcellular
compartments-including MERCs (reviewed in Bosch et al.,
2011a). Cav1 genetic ablation is associated with increased
cholesterol content and altered composition of MAMs derived
from hepatocytes: Cav1 absence preferentially affects MAMs
components involved in cholesterol and fatty acid metabolism,
thus stressing the importance of lipid precursor fluxes for the
organization and stabilization of these organelle contacts (Sala-
Vila et al., 2016).

Altogether, these evidences favor another emerging function
of MERCs, acting as “gauges” for lipid homeostasis in the cell.
Similarly to plasma membrane lipid rafts, MERCs are sensitive to
conditions disrupting or causing imbalances in lipid metabolism
and membrane composition (Zhuang et al., 2005; Vance, 2014).
Since MERCs are a platform in which many cell pathways
converge, their “design” as elements highly sensitive to changes
in lipid homeostasis allows for the integration of virtually all
those signaling networks with lipid homeostasis. Thus, their
dynamics might contribute substantially to phenomena such as
dyslipidemia-associated modulation of proteostasis (see below)
or insulin resistance (Arruda et al., 2014; Tubbs et al., 2014).
Indeed, key regulators of the Pi3K/AKT/mTOR pathway have
been reported to specifically localize at MERCs (Betz et al., 2013;
Bononi et al., 2013). It is likely that the lipid raft-like properties of
MERCs drive such recruitment and that of additional molecular
beacons like phosphatidylinositol phosphate species (Hill et al.,
2002; Goswami et al., 2005; Simons and Sampaio, 2011).

UPR AND ER STRESS SIGNALING AT
MERCs

Besides being the site for the synthesis, folding, andmaturation of
secreted and organelle-targeted proteins (Braakman and Bulleid,
2011), the ER also allocates other essential tasks, including
lipid homeostasis and mobilization, red/ox control and Ca2+

flux regulation. Therefore, the ER constitutes a “hub” through
which specific imbalances (i.e., dyslipidemia) can be easily
propagated to other cellular systems, underpinning complex
pathogenic processes such as obesity-related diseases and cancer.
Eukaryotes have evolved a complex surveillance system to cope
with functional imbalances in the ER, generally termed ER stress:
the Unfolded Protein Response (Ellgaard and Helenius, 2003;
Chakrabarti et al., 2011; UPR). UPR regulates either pro-survival
programmes, aimed at enhancing ER capacity and/or lowering its
functional demand; or pro-death pathways, in case of sustained
unresolved ER stress (Ron, 2002; Rutkowski and Kaufman, 2004;
Naidoo, 2009).

The UPR includes three signaling branches, associated with
three ER-resident transmembrane transducers. The first is the
Activation Transcription Factor-6 (ATF6). ATF6 is translocated
to Golgi membranes, where it is sequentially cleaved by the S1P
and S2P proteases (Haze et al., 1999). This yields an N-terminal
fragment which acts as a leucine-zipper transcription factor and
drives the expression of adaptive programmes. ATF6 signaling
leads to the induction of the turnover system “ER Associated
Degradation” (ERAD) and of ER chaperones (for a more detailed
overview of UPR and ERAD, please refer to Yoshida et al., 2000;
Okada et al., 2003; Galehdar et al., 2010; Tsai and Weissmann,
2010; Smith et al., 2011; Hetz, 2012; Arensdorf et al., 2013).
The second branch relies on PRKR-like endoplasmic reticulum
kinase (PERK), one of the four eIF2alpha-kinases expressed in
higher eukaryotes. Upon “sensing” alterations in ER function
or integrity through its luminal domain and its transmembrane
segment, PERK oligomerizes and becomes catalytically active,
repressing mRNA pools and thus reducing the ER load (Harding
et al., 1999). PERK activation also favors translation of the
activation transcription factor 4 (ATF4), which controls the
expression of master regulators of cell survival and apoptosis (Lu
et al., 2004). The third and most conserved UPR transducer is the
inositol-requiring enzyme 1 (IRE1, of which two isoforms exist,
being IRE1α the essential and most ubiquitous one; Tirasophon
et al., 1998). IRE1 catalyzes the unconventional splicing of the
X-box binding protein 1(XBP1) mRNA, yielding to a potent
transcriptional activator that orchestrates adaptive programmes
like the physical expansion of the ER itself (Harding et al.,
1999; Yoshida et al., 2001; Calfon et al., 2002; Hetz et al.,
2006).

As an integral part of ER, it is not surprising that MERCs
function and structure are linked to UPR signaling. IRE1
has been found in MAMs, and in turn the ER-mitochondrial
interaction significantly impacts on its activation (Mori et al.,
2013). In particular, upon acute ER stress, the MERCs-resident
chaperone Sigma-1 receptor (SigR1) stabilizes IRE1α, thus
favoring its activation and UPR initiation (Hayashi and Su,
2007; Mori et al., 2013). PERK has also been retrieved in

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 December 2017 | Volume 5 | Article 107

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Ilacqua et al. Localization@MERCs

MAMs (Verfaillie et al., 2012), where it directly associates
with Mfn2. This interaction seems to increase the activation
threshold of PERK (Muñoz et al., 2013). Further, conditions
disrupting MERCs, such as Mfn2 knockdown, are associated
with a sustained activation of some UPR/ER stress response
transducers even in basal conditions (Ngoh et al., 2012; Sebastián
et al., 2012; Schneeberger et al., 2013). Recent evidence suggests
that changes of MERCs dynamics can influence not only UPR
triggering thresholds and amplitude, but also UPR shutdown
dynamics. For example, the MERCs stabilization appears as an
essential component to induce IRE1 shutdown during ER stress
recovery (Sanchez-Alvarez et al., 2017). Conversely, MERCs
also coordinate cell functioning and UPR activation: increased
coupling of ER and mitochondria accompanies early phases
of ER stress and sustains the metabolic adaptations necessary
for the cell to cope with non-physiological conditions (Bravo
et al., 2011). Further potential ties between MERCs and adaptive
UPR signaling pertain to activities determining red/ox potential
in the ER. For example, protein disulfide isomerases such
as PDIA6 accrue at MERCs (Vance and Vance, 2009) and
regulate IRE1 activation (Eletto et al., 2014, 2016). ER stress
associated with ROS dysregulation is likely transduced by the
PERK-dependent branch at MERCs too (Verfaillie et al., 2012).
Hence, the confinement of UPR transduction at MERCs appears
fundamental for the integration of the UPR response with
multiple signaling pathways.

Does ER homeostasis surveillance influence MERCs
composition? Specific adaptations at MERCs take place during
ER stress. In these circumstances expression levels of CNX at
the plasma membrane decrease (Wiest et al., 1995; Okazaki
et al., 2000), increasing in parallel at MAMs (Myhill et al., 2008;
Lynes et al., 2012). Another prominent example are programmes
favoring cell apoptosis in the face of unresolved or excessive ER
stress. Sustained PERK activation contributes to stabilizeMERCs,
enabling lipid peroxidation at the mitochondrial membrane-
which in turn enhances expression and/or mitochondrial
recruitment of proapoptotic regulators such as Bax and Ca2+

uptake (McCullough et al., 2001; Puthalakath et al., 2007;
Galehdar et al., 2010; Verfaillie et al., 2012). A peculiar case of
MERCs targeting regulated by UPR is embodied by IRE1 and
PERK themselves. As stated above, they continuously monitor
misfolded protein levels in the ER lumen through specialized
domains. Deletion mutants of yeast IRE1 and of vertebrate IRE1
and PERK lacking luminal domains appear insensitive to acute
protein misfolding, but retain sensitivity to conditions altering
ER composition or physical properties, such as increased global
acyl chain saturation or cholesterol content (Brodsky and Skach,
2011; Volmer et al., 2013; Volmer and Ron, 2015). At least in
the case of IRE1, such “membrane monitoring” relies on the
features of its transmembrane domain (Halbleib et al., 2017;
Kono et al., 2017). The latter mechanism is likely to determine
the segregation of UPR transducers to MERCs, possibly in
combination with other regulatory layers such as transient
dimerization or conformational changes. Recruitment of these
UPR sensors at MERCs further contributes to the integration
between UPR signaling and cell metabolism (Walter and Ron,
2011).

DISRUPTED MERCs LOCALIZATION:
POTENTIAL IMPACT IN HUMAN
DISORDERS

In general, it is well-established that defective subcellular
localization can either alter the activity of a protein and/or the
subcellular processes in which it is involved. If we extend this
concept to MERCs and we take into account that they participate
in a myriad of essential process (see above), it seems obvious
that their alteration or adaptation to stress conditions could
both worsen and propagate imbalances across cellular systems—
a phenomenon that appears to be common-place for complex
diseases. For instance, the disruption of general mechanisms
impacting on MERCs, such as protein palmitoylation, could
simultaneously affect their integrity and that of other cellular
functions. This could be the basis of phenotypic variability and
epistatic effects across many different disorders, ranging from
schizophrenia and other neurodegenerative disorders to tumor
development (Giorgi et al., 2010;Mórotz et al., 2012; Sander et al.,
2015).

MERCs dysfunctions could be caused not only by mutations
of proteins that exert their function at these sites, but also by
impaired targeting of MERCs-resident proteins. The subsequent
pathological conditions associated to MERCs defects will be
more evident in tissues where that specific MERCs protein
is mostly expressed/active. This is the case, for example, of
CNX. CNX acts mostly as a chaperone for glycoproteins, which
are key molecules for the development and maintenance of
myelin structure (Denzel et al., 2002; Quarles, 2002). Hence, it
is predictable that defective CNX would cause myelinopathy:
this is actually the case, as confirmed in CNX knockout mice
(Kraus et al., 2010). Demyelination has diverse causes, such as
for example mutations in myelin basic proteins or altered activity
of enzymes responsible for the production of cholesteryl esters:
defective MERCs activity should be added to the list of possible
mechanisms underlying it.

As reported above, MERCs have been implied in metabolic
diseases, like obesity and diabetes (Tubbs and Rieusset,
2017). Hepatocytes from obese mice are characterized by
increased coupling between mitochondria and ER, and the
consequent mitochondrial Ca2+ overload is paralleled by higher
mitochondrial reactive oxygen species (ROS) production and
abnormal glucose metabolism (Arruda et al., 2014). This
phenotype can be ameliorated upon silencing of PACS-2 and
IP3R1, leading to lower cell stress and increased glucose tolerance
(Arruda et al., 2014).

Another MERCs protein, Mfn2, besides being the genetic
cause of an inherited peripheral neuropathy (Charcot Marie
Tooth 2a), has also been associated with metabolic dysfunctions
(Sebastián et al., 2012; Boutant et al., 2017). A recent study
highlighted that metabolic transitions in liver are accompanied
by changes in the MERCs structure (Sood et al., 2014), further
suggesting thatMERCs play an active role in metabolic processes:
hence, even mild dysfunction of MERCs could exacerbate a given
pathological condition.

Downregulation ormutations of a protein that regulates broad
physicochemical properties of MERCs may alter the recruitment
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or stability of defined subsets of MERCs components, thus
preferentially impacting specific functions or metabolic routes.
An example of such scenario is showcased by models of
genetic deficiency in Cav1 protein. Quantitative proteomic
profiling of MAM fractions purified from livers of Cav1KO
mice shows a depletion of steroid metabolism and fatty acid
catabolism regulators (Sala-Vila et al., 2016). It remains to be
elucidated whether these changes are due to aberrant membrane
composition (i.e., high free cholesterol), and which is their
contribution to the metabolic phenotypes associated with Cav1
deficiency (i.e., lipodystrophy and metabolic inflexibility; Bosch
et al., 2011b; Fernández-Rojo et al., 2013; Parton and del
Pozo, 2013). MERCs-associated lipid metabolism might be of
relevance not only for metabolic phenotypes: it could add to
the pathogenesis of neurodegenerative disorders like Alzheimer’s
disease (AD). One of the main gene products associated to
familial cases of AD (presenilins, PSs) is enriched in MAMS,
although the link between MAMs and sporadic AD is less
obvious (Zampese et al., 2011). Importantly, a genetic connection
exists between phospholipid/cholesterol dyshomeostasis and AD
(Mapstone et al., 2014; Chang et al., 2017). Further, inhibition of
cholesterol transport impairs PSs localization at the ER, inducing
their accumulation in vesicles and enhancing the production of
the main component of AD neurofibrillary tangles, Aβ (Runz
et al., 2002). Finally, an apolipoprotein E variant associated with
higher risk of lipid metabolism-associated disorders (ApoE4)
specifically alters MERCs lipid metabolism and favor AD-like
changes in vitro (Area-Gomez et al., 2012).

Another interesting example of a potentially pathological
mislocalization of a MERCs component is C19orf12. Mutations
in this protein, whose physiological function is yet unknown,
are the genetic cause of Mitochondrial Membrane Protein
Associated Neurodegeneration (MPAN, Hartig et al., 2013). This
severe, early-onset pathological condition is characterized by
optic atrophy, generalized dystonia, neuropathy, and psychiatric
symptoms. Interestingly, C19orf12 has been retrieved at
mitochondria, ER and MAMs, and its mutated forms appear
to mislocalize. The evidence that fibroblasts from MPAN
patients are characterized by higher mitochondria Ca2+ uptake
suggest that this protein somehow regulates MERCs function,
its localization likely causing enhanced ER-mitochondria Ca2+

transfer and hence increased sensitivity to apoptosis (Venco
et al., 2015). Notably, C19orf12 mutations have been linked
to Parkinson’s Disease (PD), strengthening the possibility that
PD is linked to defective MERCs function. This hypothesis is
substantiated by a number of additional findings. For example
α-synuclein (α-syn), a protein whose mutations are linked to
PD, has been also retrieved in MAMs (Eliezer et al., 2001; Jao
et al., 2008; Guardia-Laguarta et al., 2014). The group of E.
Schon demonstrated that mutated α-syn has lower affinity for
MERCs, thus challenging the theory that mutant α-syn are “gain
of function”, and favoring a “loss of MAMs function” hypothesis
(Guardia-Laguarta et al., 2014, 2015). Additional data support
defective MERCs contribution to the etiology of PD: mutants
for parkin (PARK2), DJ-1 (PARK7), and PINK1 (PARK6), all
causing recessive early-onset PD cases, can impact on ER-
mitochondria tethering, mitochondrial quality control, and Ca2+

transfer between the two organelles (Li et al., 2005; Narendra
et al., 2008; Davison et al., 2009; Ziviani et al., 2010; Calì et al.,
2013).

Mutated MERCs proteins are not the only reason for
the development of MERCs linked diseases or symptoms:
being “raft”-like domains, changes in lipid homeostasis could
exert deleterious effects on their structure/composition. One
of such example could be atherosclerosis. It has been shown
that an ER overload of cholesterol in murine macrophages
causes prolonged ER stress and UPR activation culminating
in apoptosis, substantially contributing to the progression of
this disease (Tabas, 2002; Feng et al., 2003). An intriguing
question is whether MERCs are modulated in arterial wall cell
populations at different stages of atherosclerosis progression, and
what their pathogenic impact may be. Notably, MERCs could
also take part to the inflammatory response involved in such
pathologies, as they have also been involved in the activation of
the inflammasome complex and ILβ production, although this
needs to be more deeply investigated (Zhou et al., 2011; Lerner
et al., 2012; Marchi et al., 2014).

Altogether these findings suggest that defective MERCs
localization is likely not only to constitute discrete, primary
elements of pathogenesis, but also to be a source of epistatic
effects underlying the impact of additive risk factors.

CONCLUSIONS

In the last years the interest on MERCs biology has exponentially
grown, due to the evidence that at these interfaces many
biological processes integrate and that MERCs defects underlie
several pathological conditions. Many proteins have been
retrieved in the biochemical counterparts of MERCs (that
are, MAM fractions, see above) but so far the mechanisms
responsible for targeting at MERCs have yet not been fully
elucidated. Interestingly, post-translational modifications such as
palmitoylation, miristoylation, and oxidation seem to gain the
upper hand over a more canonical targeting signal. Another
standing question pertains as to how special conditions, such
as ER stress, specifically contribute to determine MERCs
composition and hence functional state. It is likely that several
independent features of an ER-stressed cell take part to such
remodeling. Acute ER stress is frequently associated with
alteration (mostly attenuation) of signaling pathways which are
considered to stabilize MERCs, namely AKT-mTOR signaling
(Betz et al., 2013), or with increased ER Ca2+ levels, that could
in turn enhance (at least in early stress phases) mitochondria-
ER proximity as an adaptive response for the maintenance of
intracellular Ca2+ homeostasis (Bravo et al., 2011). Chronic ER
stress as well can induce MERCs remodeling: for example, lipid
imbalance associated with obesity might promote connectivity
between the two organelles, in an attempt to restore equilibrium
among different lipid species and to exert a tighter control
on Ca2+ homeostasis, which is significantly perturbed in such
dyslipidemic states (Fu et al., 2011; Arruda et al., 2014).

Overall, despite a small number of elegant studies on MERCs
targeting mechanisms and protein relocation at MAM fractions
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have been published (such as for example, Myhill et al., 2008;
Lynes et al., 2012), this aspect in the field of MERCs biology
appears to be just at its infancy. Exciting findings lie ahead, and
their discovery will certainly represent another step forward into
the complexity of cellular signal transduction, as well as in the
understanding of pathological processes.
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