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Toll-like receptor (TLR) agonists induce metabolic reprogramming, which is required for

immune activation.We have investigatedmechanisms that regulate metabolic adaptation

upon TLR-stimulation in human blood DC subsets, CD1c+ myeloid DCs (mDCs)

and plasmacytoid DCs (pDCs). We show that TLR-stimulation changes expression of

genes regulating oxidative phosphorylation (OXPHOS) and glutamine metabolism in

pDC. TLR-stimulation increases mitochondrial content and intracellular glutamine in

an autophagy-dependent manner in pDC. TLR-induced glutaminolysis fuels OXPHOS

in pDCs. Notably, inhibition of glutaminolysis and OXPHOS prevents pDC activation.

Conversely, TLR-stimulation reduces mitochondrial content, OXPHOS activity and

induces glycolysis in CD1c+ mDC. Inhibition of mitochondrial fragmentation or promotion

of mitochondrial fusion impairs TLR-stimulation induced glycolysis and activation of

CD1c+ mDCs. TLR-stimulation triggers BNIP3-dependent mitophagy, which regulates

transcriptional activity of AMPKα1. BNIP3-dependent mitophagy is required for induction

of glycolysis and activation of CD1c+ mDCs. Our findings reveal that TLR stimulation

differentially regulates mitochondrial dynamics in distinct human DC subsets, which

contributes to their activation.

Keywords: CD1c+ mDC, pDC, glutaminolysis, mitophagy, mitochondrial dynamics, OXPHOS, glycolysis

INTRODUCTION

Dendritic cells (DCs) regulate the immune homeostasis and development of adaptive immune
responses. In human peripheral blood, there are two main subsets of naturally circulating DCs,
namely CD1c+ myeloid dendritic cells (CD1c+ mDCs) and plasmacytoid dendritic cells (pDC)
(1, 2). These subsets differ in function, localization, and phenotype. CD1c+ mDCs are primarily
localized in the marginal zone of the lymph nodes and confer immunity against bacteria and fungi
(3, 4) by inducing Th1 responses via the production of IL-12 (5, 6). Conversely, pDCs localize to
the T-cell areas in lymph nodes and are proficient in viral antigen recognition (7). Mature pDCs
abundantly produce type I IFNs upon activation and induce T cell responses (2, 8).
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Under non-inflammatory conditions, DCs are poorly
immunogenic. However, inflammatory stimuli or pathogen-
derived products trigger a group of pattern recognition receptors,
including Toll-like receptors (TLRs), which results in a process of
cellular activation, termed DC maturation, hence making them
highly immunogenic (9). DC maturation is a tightly coordinated
response, which involves various signaling pathways, molecular
trafficking, cytokine production and cytoskeletal remodeling
(10–12). These processes require metabolic adaptations, which
are essential for DC survival, migration and eventually the
development of immunity. DC activation upon TLR stimulation
is associated with metabolic reprogramming and expression
of genes encoding cytokines and chemokines, which promote
immune response (13, 14). Effector functions requires a
glycolytic switch in mouse bone-marrow DCs cultured in
GM-CSF (14, 15), while lipid metabolism and OXPHOS are
indispensable for murine pDC immune function (16).

Mitochondrial dynamics and bioenergetics are reciprocally
coupled to adjust bioenergetic adaptation to metabolic needs of
the cell (17). Mitochondrial dynamics are controlled by a group
of dynamin-related GTPases, i.e., mitofusin 1 and 2 (Mfn1/2) and
optic atrophy 1 (Opa1) for fusion and dynamin related protein 1
(Drp1) for fission (18). Mfn1 plays a crucial role in mitochondrial
fusion, while Mfn2 is central to mitochondrial metabolism, by
regulating mitochondrial membrane potential and the OXPHOS
system (17). The balanced mitochondrial dynamics is critical
for normal mitochondrial function, bioenergetics and quality
control via mitophagy (19–21). Mitophagy is a process by
which a cell removes damaged mitochondria to use them
as additional fuels during stress (22, 23). Upon stress or
damage, mitochondria exhibit compromised metabolism, ATP
production and reduction in membrane potential, which are
characteristics of mitochondrial dysfunction and the initial
trigger for mitophagy (24).

Understanding of metabolic changes underpinning human
DC-subsets immune function are less known and insights into
these changes can help develop new strategies for controlling
immunogenicity. Given the distinct ontogeny and functional
specializations of CD1c+ mDC and pDC, we aimed at identifying
metabolic adaptations engaged by human DC-subsets for
effector function. We here demonstrate that TLR-stimulation
in CD1c+ mDC and pDC results in differential mitochondrial
rewiring and metabolic adaptations. TLR stimulation results
in increased glutaminolysis and OXPHOS in pDC, while it
promotes mitophagy and glycolysis in CD1c+ mDC. Notably,
these metabolic adaptations are indispensable for activation of
CD1c+ mDC and pDC. Our data provides novel insights into
subset-specific regulation of mitochondrial metabolism, which
impacts DC function.

Abbreviations: PGC1α, peroxisome proliferator-activated receptor

gamma coactivator 1-alpha; BNIP3, BCL2 interacting protein 3; Mfn1/2,

mitofusin 1/2; Drp1, dynamin-related protein; ENO2, enolase; BPTES,

bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide; 3-MA, 3-

methyladenine; ROT, rotenone; AA, antimycin A; OXPHOS, oxidative

phosphorylation; ETC, electron transport chain; pDC, plasmacytoid

dendritic cell; CD1c+ mDC, CD1c+ myeloid dendritic cells; 2-NBDG,

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose.

MATERIALS AND METHODS

Chemicals
Mdivi-1 (#M0199), Niclosamide (#N3510), 6-Diazo-5-
oxo-L-norleucine (#D2141), 2-Deoxy-D-glucose (#D8375),
BPTES (#SML0601), Chloroquine (#C6628), 3-Methyladenine
(#M9281), Poly-D-lysine hydrobromide (#P7280), Antimycin
A (#A8674), Oligomycin A (#O4876) and Rotenone (#R8875)
were obtained from Sigma-Aldrich. Olomoucine (#10010240)
was obtained from Caymanchem. Piericidin A (#ALX-380-235-
M002) was obtained from Enzo Life Sciences. MitoTrackerTM

Green FM (#M7514), MitoTrackerTM Red CMXRos (#M7512)
and 2-NBDG (#N13195) were obtained from Thermo Fisher
Scientific. EnzyChromTM Glutamine Assay Kit (#EGLN-100)
was purchased from BioAssay Systems. 15-oxospiramilactone
(S3) was kindly provided by Prof. Xiaojiang Hao (The State
Key Laboratory of Phytochemistry and Plant Resources in West
China, Kunming Institute of Botany, Chinese Academy of
Sciences, Kunming, Yunnan 650204, China). SF2312 was kindly
provided by Dr. Florian Muller (The University of Texas MD
Anderson Cancer Center, USA).

Cytokine detection–Supernatant was taken from each sample
after overnight incubation and analyzed with standard sandwich
ELISAs to detect TNF-α using human TNF-α ELISA Kit
(#88-7346-22) from Thermo Fisher Scientific and IFN-α
(#BMS216INSTCE) from Bender Medsystems, Vienna.

DC Isolation and Culture
For functional assays, DCs were isolated from buffy coats
of healthy volunteers (Sanquin, Nijmegen, The Netherlands).
Written informed consent per the Declaration of Helsinki and
according to institutional guidelines, were obtained from healthy
volunteers. Peripheral blood mononuclear cells (PBMCs) were
isolated by using Ficoll density centrifugation (Lymphoprep;
Axis-Shield PoC AS, Oslo, Norway). CD1c isolation kit (Miltenyi
Biotec, Bergisch-Gladbach, Germany) was used to isolate CD1c+

mDCs, as per manufacturer’s instructions. Next, monocytes were
depleted by either plastic adhesion, or by the use of CD14
microbeads (Miltenyi Biotec). Consequently, pDCs were purified
by positive selection using anti–BDCA-4–conjugated magnetic
microbeads (Miltenyi Biotec). DCs were cultured in X-VIVO-
15 medium (Lonza, Basel, Switzerland) supplemented with 2%
human serum (Sanquin). DCs were stimulated with: pRNA
(15µg/ml) freshly prepared 5–10min before adding to the cell
culture. pDCs were cultured with IL-3 (10 ng/mL) (Cellgenix,
Freiburg, Germany) as a survival factor in addition to the stimuli.

Flow Cytometry
The phenotype of pDC and CD1c+ mDC populations was
determined by flow cytometry. DC purity was assessed by double
staining CD11c+/CD1c+ for CD1c+ mDCs (above 95%) and
BDCA2/CD123 for pDCs (above 95%; all Miltenyi Biotec) (25).
The following primary monoclonal antibodies (mAbs) were used
to determine the maturation state of the DCs: anti–CD80-APC,
anti–PD-L1-APC (all BD Bioscience, San Jose, CA). Anti-BNIP-
3 Antibody (#sc-56167 FITC) was purchased from Santa Cruz
Biotechnology. Anti-Mfn2 (#M6444) and Anti-Drp1 (#ABT155)
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were purchased from Sigma-Aldrich Anti-Porin (#529536) was
purchased from Calbiochem. Anti-NDUFA10 (#ab174829) was
purchased from abcam. Autophagosomes were detected using
Autophagy detection kit (Enzo Life Sciences # ENZ 51031-
0500) according to the manufacturer’s instructions. Briefly, cells
were incubated with CYTO-ID Green autophagy detection dye
(1:2,000) for 30min at 37◦C. Subsequently, cells were washed
and analyzed by flow cytometry. Cell viability was determined
using Fixable Viability Dye eFluorTM 780 (Invitrogen # 65-0865-
14) according to manufacturer’s instructions. Briefly, cells were
incubated with Fixable Viability Dye eFluorTM 780 (1:2000) at
4◦C for 20min. Subsequently, cells were washed and analyzed
by flow cytometry.Measurements were performed on FACSVerse
flowcytometers (BD).

Metabolism Assay
An XF-96 Extracellular Flux Analyzer (Seahorse Bioscience) was
used for Extracellular flux analyses of CD1c+ mDC and pDCs
(50,000 cells/well) (26). For mitochondrial fitness tests, OCR
was measured sequentially at basal, and following the addition
of 1µM oligomycin, 3µM FCCP (fluorocarbonyl cyanide
phenylhydrazone), 1µM ROT + 1µM AA. Intracellular
concentrations of glutamine were determined using a
quantitative colorimetric enzyme assay kit (#EGLN-100;
BioAssay Systems, Hayward, CA). Samples were diluted (1:2)
with distilled water. All materials and chemicals were provided
by the manufacturer, and manufacturer’s instruction were
followed.

Protamine-RNA Complexes
pRNA complexes were made freshly before adding to the cells.
Protamine (protaminehydrochloride MPH 5000 IE/ml; Meda
Pharma BV Amstelveen, The Netherlands) was diluted to 0.5
mg/ml in RNase free water and mixed with 2-kbp-long single-
strandedmRNA (coding for gp100). It was extensively mixed and
incubated for 5–10min at room temperature, before added to the
cells.

Quantitative Real-Time PCR (qPCR)
qPCR was carried out in 25-µl reaction mixture containing
2 µl of cDNA, 12.5 µl of SYBR Green master mix (Applied
Biosystems #A25742, Austin, USA) and 250 nmol of forward and
reverse primer. The reaction conditions were as follows: 50◦C for
2min, 95◦C for 10min and then 40 cycles of 95◦C for 15 s and
60◦C for 1min. For qPCR following primer sequences were used;
AMPK1α forward, 5′-TGCGTGTACGAAGGAAGAATCC-3′

and reverse, 5′-TGTGACTTCCAGGTCTTGGAGTT-3′; β-Actin
forward, 5′-TGACAGGATCGAGAAGGAGA-3′ and reverse
5′-CGCTCAGGAGGAGCAATG-3′.

RNA Sequencing
Total RNA was isolated from CD1c+ mDCs and pDCs using
Trizol (Invitrogen, MA, USA). RNA sequencing and read
alignment were performed by BGI TECH SOLUTIONS (Hong
Kong). Reads were aligned to human genome version 19. RNA
sequencing data is deposited at the Gene Expression Omnibus
(GEO; accession number: GSE89442). Data was analyzed using

the R platform package “edgeR,” version 3.12, to analyze
whole transcriptome principal coordinates analysis (using the
“plotMDS” command), differential expression analysis, and GO
term analysis. Differential expression was determined by fitting
a generalized linear model using the “glmFit” command, and
significance was determined using the likelihood ratio test
provided by the “glmLRT” command (27).

RESULTS

Mitochondrial Dynamics Is Differentially
Regulated in CD1c+ mDC and pDC Upon
TLR7/8 Stimulation
To investigate changes in metabolism, human CD1c+ mDC
and pDC were stimulated with a complex of protamine and
mRNA (pRNA) that acts as a TLR7/8 ligand. pRNA has been
shown to activate CD1c+ mDCs and pDCs and induces them
to release IL-12 and IFN-α, respectively (28). Previously, we
analyzed the whole-transcriptome of human CD1c+ mDC and
pDC upon TLR7/8 stimulation (27). Our data demonstrated
that pRNA upregulated cytokines and migration-related genes in
CD1c+ mDCs as well as type I and III interferons (IFN-α and
IFN-λ) related genes in pDC. Moreover, we demonstrated that
pRNA stimulation increased expression of maturation markers
(i.e., CD80, PD-L1 & CD40) in both CD1c+ mDC and pDC,
in addition to increase in immunostimulatory cytokines i.e.,
TNFα and INFα for CD1c+ mDC and pDC, respectively (27).
To investigate whether changes in metabolism are required for
human DC-subsets immune response, we analyzed expression
of OXPHOS related genes in human CD1c+ mDC and pDC.
OXPHOS related genes were significantly downregulated in
CD1c+ mDCs upon pRNA-stimulation (Figure 1A). Conversely
pRNA-stimulation increased expression of NDUFAF1, NDUFA9,
COX7A2, ATP5H, and ATP6V1F in pDC (Figure 1B) suggesting
up-regulation of OXPHOS in pDC.

To explore the question whether TLR-stimulation modulates
OXPHOS, we next examined the effect of pRNA on NDUFA10
protein, which is an accessory subunit of the mitochondrial
respiratory chain complex I (29). Importantly, pRNA stimulation
reduced NDUFA10 in CD1c+ mDC, in comparison to increase
of NDUFA10 in pDC (Figure 1C). Given, the crucial role of
Mfn2 and Drp1 in regulating OXPHOS system and metabolism
(17, 30–32), we analyzed the effect of TLR-stimulation on
Mfn2 and Drp1 protein levels. Intriguingly, analysis of protein
expression revealed that pRNA-stimulation increased levels
of Drp1 in CD1c+ mDC whereas Mfn2 levels remained
unchanged (Figure 1C). Conversely, in pDC, pRNA-stimulation
increased Mfn2 protein levels, whereas Drp1 protein levels
remained unchanged (Figure 1C). Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) controls
mitochondrial biogenesis, oxidative phosphorylation (33, 34) and
mitochondrial dynamics (35, 36). TLR7/8-stimulation increased
PGC-1α expression in pDC, whereas it had no effect on PGC-1α
expression in CD1c+ mDC (Figure 1C). The Voltage-Dependent
Anion Channel (VDAC or porin) is an outer membrane
mitochondrial protein, which is implicated in alteration of
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FIGURE 1 | Effect of pRNA on mitochondrial dynamics in CD1c+ mDC and pDC. (A) Heatmap showing expression of significantly changed genes which regulate

OXPHOS in CD1c+ mDC upon pRNA-stimulation. Red color indicates increased expression while blue color shows decreased expression. (B) Heatmap showing

expression of significantly changed genes which regulate OXPHOS in pDC upon pRNA-stimulation. Red color indicates increased expression while blue color shows

decreased expression. (C) Flow cytometry histograms of PGC1α, Mfn2, NDUFA10, Porin and Drp1 in Drp1 in CD1c+ mDC and pDC. Black represents isotype

control, blue represents unstimulated control and red represents pRNA stimulated cells for 6 h. (D) Percentage mean fluorescence intensity of cells stained with

MitoTracker Green FM and stimulated with pRNA for 6 h. Data represents mean ± SEM of four independent experiments *p < 0.05; **p < 0.01 (Student’s t-test). (E)

Flow cytometry histograms of Mfn2 in CD1c+ mDC. Blue represents unstimulated control, red represents pRNA stimulated cells for 6 h, brown represents S3 and

green represents S3+pRNA. (F) Flow cytometry histograms of Drp1 in CD1c+ mDC. Blue represents unstimulated control, red represents pRNA stimulated cells,

brown represents Mdivi-1 and green represents Mdivi-1+pRNA. (G) Percentage mean fluorescence intensity of cells stained with MitoTracker Green FM and

stimulated with pRNA for 6 h in the presence or absence of 5µM S3 or 1µM Mdivi-1. Data represents mean ± SEM of four independent experiments. *p < 0.05; **p

< 0.01 (Student’s t-test).
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mitochondrial morphology (37). Importantly, pRNA-stimulation
reduced porin levels in CD1c+ mDC and increased porin levels
in pDC (Figure 1C). Of note, pRNA-stimulation did not affect
viability of CD1c+ mDC and pDC (Supplementary Figures 4,
6).

Based on these findings, we hypothesized that TLR7/8-
stimulation alters mitochondrial content in CD1c+ mDC. To test
this, CD1c+ mDCwere stained withMitoTrackerTM Green FM, a
fluorescent dye that localizes to mitochondria in a mitochondrial
membrane potential independent manner. Indeed, TLR7/8-
stimulation significantly decreased mitochondrial content in
CD1c+ mDC (Figure 1D). By comparison, staining of pDC
with MitoTrackerTM Green FM showed a significant increase
in mitochondrial content upon TLR7/8-stimulation (Figure 1D)
consistent with increased Mfn2 and PGC1α levels. To confirm
the involvement of mitochondrial dynamics in regulating
mitochondrial mass, we stimulated CD1c+ mDC with pRNA
in the presence or absence of a fusion promoter (15-
oxospiramilactone, S3) (38) or a fission inhibitor (Mdivi-1) (39).
Interestingly, S3 increasedMfn2 expression andMdivi-1 reduced
both endogenous and pRNA-induced Drp1 levels in CD1c+

mDC (Figures 1E,F). Of note, S3 and Mdivi-1 significantly
prevented loss of mitochondrial content in CD1c+ mDC upon
TLR7/8-stimulation (Figure 1G). Collectively, these data indicate
that TLR7/8-stimulation results in mitochondrial fragmentation
and reduced mitochondrial content in CD1c+ mDCs and
increased mitochondrial biogenesis, fusion and content in pDCs.

pDC Stimulated via TLR7/8 have Increased
Glutaminolysis and OXPHOS Which Are
Crucial For Activation
We next asked whether increased mitochondrial fusion and
content along with upregulation of NDUFA10 and OXPHOS
related genes in TLR7/8-stimulated pDCs was associated with
metabolic changes. OXPHOS is driven by NADH and FADH2,

produced by the tricarboxylic acid (TCA) cycle (40, 41) and
the amino acid glutamine is among the key metabolites that
support the TCA cycle. Glutaminolysis is a metabolic pathway,
which requires deamination of glutamine by glutaminase (GLS),
generating glutamate, which in turn is converted to α-KG,
a TCA cycle intermediate (42, 43). To determine whether
glutaminolysis contributes to increased OXPHOS upon TLR7/8-
stimulation in pDC, we examined expression of genes related
to amino acid metabolism. pRNA-stimulation significantly
increased expression of GLS and SLC1A3 in pDC (Figure 2A).
GLS catalyzes the conversion of glutamine to glutamate (44)
while SLC1A3 is a glutamate transporter (45, 46). Upregulation
of these genes suggests increased glutaminolysis in pDCs
upon TLR-stimulation. To test this, we measured intracellular
glutamine levels in pDC. pRNA-stimulation significantly
increased intracellular glutamine in pDC, which could be
inhibited by 6-Diazo-5-oxo-L-norleucine (DON) (Figure 2B),
a glutamine antagonist, which inhibits glutamine utilizing
enzymes by irreversible alkylation of L-cysteinyl residues
(47).

Notably, extracellular flux analysis (EFA) revealed increased
basal oxygen consumption rate (OCR), maximal OCR
(Figure 2C; Supplementary Figures 1B,C), ATP-linked OCR,
mitochondrial OCR and spare respiratory capacity (SRC)
in pRNA-stimulated pDC compared to unstimulated pDC
(Figures 2D–F). To explore whether increased OXPHOS activity
in pRNA-stimulated pDC is due to increased glutaminolysis,
we pharmacologically attenuated Glutaminase, an enzyme
responsible for conversion of glutamine into glutamate. pDC
were stimulated with pRNA in the presence or absence of
BPTES, a chemical inhibitor of GLS. BPTES inhibited in
pDC the pRNA-induced increase in basal OCR (Figure 2C;
Supplementary Figures 1A–C), ATP-linked OCR (Figure 2D),
maximal OCR (Supplementary Figure 1C) mitochondrial OCR
(Figure 2E) and SRC (Figure 2F). These results indicate that
pRNA stimulation of pDC results in increased OXPHOS due to
increased glutaminolysis. Intriguingly, we did not observe an
increase in ECAR (Supplementary Figure 1D) and 2-NBDG
uptake (Figure 2G) upon pRNA-stimulation.

We next asked whether these metabolic changes are required
for pDC activation. Activation of these cells was assessed by
measuring secretion of immunostimulatory cytokine IFNα and
membrane expression of co-stimulatory molecule CD80 and co-
inhibitory molecule PD-L1. A reduced secretion of IFNα by
pRNA-stimulated in pDC was observed when Rotenone (ROT),
Antimycin A (AA), BPTES and DON were added to the culture
medium (Figure 2H). Addition of these factors also significantly
reduced the pRNA-mediated upregulation of CD80 and PD-
L1 on pDC (Figure 2I). By comparison, we observed no effect
of ROT, AA, BPTES and DON on pRNA-stimulated TNFα
(Supplementary Figure 3B) and CD80 and PD-L1 in CD1c+

mDC (Supplementary Figure 3C).
Of note, TLR stimulation triggers autophagy in pDC,

which is required to produce type I IFN (48–52). Consistently,
we observed significant increase in autophagosomes upon
pRNA-stimulation in pDC (Figure 3A). Intriguingly,
autophagy has been reported to supply metabolic substrates
to preserve mitochondrial function (53–57). We hypothesized
that increased glutamine and glutaminolysis in TLR7/8-
stimulated pDCs is provided by autophagy. To investigate
this, autophagy inhibitor 3-MA was added during the pRNA
stimulation of pDC. 3-MA significantly reduced the pRNA-
induced increase in glutamine levels in pDC (Figure 3B).
Consistently, 3-MA significantly reduced pRNA-induced
increase in basal OCR (Figure 3C; Supplementary Figure 1E),
maximal OCR (Supplementary Figure 1F), ATP-linked OCR
(Supplementary Figure 1G), SRC (Supplementary Figure 1H)
and mitochondrial OCR (Figure 3D) indicating the requirement
of autophagy for optimal induction of OXPHOS upon TLR-
stimulation of pDC. Notably, 3-MA significantly reduced both
IFNα secretion (Figure 3E) as well as expression of CD80
and PD-L1 upon pRNA-stimulation of pDCs (Figure 3F).
Since, TLR7/8 stimulated pDC activation was prevented by
pharmacological attenuation of OXPHOS, glutaminolysis and
autophagy, we next asked whether the observed reduction was
due to effect on cell viability. Analysis of cell viability revealed that
BPTES, DON, 3-MA, ROT and AA did not affect viability of pDC
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FIGURE 2 | pDC stimulated with pRNA have increased glutaminolysis and OXPHOS which are required for activation. (A) Heatmap showing expression of

significantly changed genes which regulate amino acid metabolism in pDCs upon pRNA-stimulation for 6 h. Red color indicates increased expression while blue color

shows decreased expression. (B) Glutamine concentration measured by a coupled glutaminase, glutamate dehydrogenase assay with correction for glutamate

concentration. Data represents mean ± SEM of experiments from six donors. *p < 0.05; **p < 0.01 (Student’s t-test). (C) Mitochondrial fitness test of pDCs

stimulated with pRNA for 6 h in the presence or absence of 5µM BPTES. Data represents mean ± SEM of three independent experiments. (D–F) Data was collected

within same experiments as C, but is shown separately for better understanding. Data represents mean ± SEM of three independent experiments. *p < 0.05; **p <

0.01 (Student’s t-test). (G) Flow cytometry histograms of 2-NBDG stained pDCs. Blue represents unstimulated control and red represents pRNA-stimulated cells pDC

for 6 h. (H) IFN-α levels on protein level were measured in the supernatant of the pDCs stimulated for 6 h. Data represents mean ± SEM of three independent

experiments **p < 0.01; ***p < 0.001 (Student’s t-test). (I) Percentage mean flouresence intensity of maturation markers (CD80 and PD-L1) in pDCs stimulated for

6 h. Data represents mean ± SEM of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 (Student’s t-test).
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alone or in combination with pRNA (Supplementary Figures 7,
8). Together, these data show that TLR7/8-stimulated pDC
activation requires autophagy-supplemented glutaminolysis to
fuel OXPHOS.

TLR7/8 Stimulated Alterations in
Mitochondrial Dynamics Triggers
Glycolysis Which Is Required For CD1c+

mDC Activation
Our data show that TLR7/8-stimulation reduces expression of
OXPHOS related genes and mitochondrial content in CD1c+

mDCs, which is associated with metabolic changes with a
shift toward glycolysis (58) to compensate for the reduced
activity of the respiratory chain to generate ATP (17). In
this sense, we wondered whether mitochondrial alterations
induced by TLR7/8-stimulation led to a metabolic shift in
CD1c+ mDC. To this end, analysis of glycolysis related
genes showed significant upregulation of ENO2 (Figure 4A).
ENO2 encodes a dimeric enzyme, Enolase, which catalyzes
the second last step in glycolysis i.e., interconverting 2-
phosphoglycerate (2-PGA) and phosphoenolpyruvate (PEP)
(59). Next, wemonitored EFA in pRNA-stimulated CD1c+ mDC.
We found that TLR7/8-stimulation significantly reduced OCR
(Figure 4B; Supplementary Figure 2C). To test our hypothesis
that mitochondrial fragmentation leads to induction of glycolysis
in CD1c+ mDC upon TLR7/8-stimulation, we monitored EFA
in the presence of S3 and Mdivi-1. Interestingly, S3 and Mdivi-
1 significantly prevented the pRNA-induced decrease in OCR
(Figure 4B; Supplementary Figures 2A–C), SRC (Figure 4C),
mitochondrial OCR (Figure 4D) ATP-linked OCR (Figure 4E)
and maximal OCR (Supplementary Figure 2D) in CD1c+

mDCs.
To investigate the induction of glycolysis, we monitored

pRNA-induced ECAR in CD1c+ mDC. Importantly, pRNA
stimulation significantly increased ECAR in CD1c+ mDC
(Figure 4F). Of note, S3 and Mdivi-1 significantly reduced
the pRNA-induced increase in ECAR (Figure 4F), indicating
that indeed mitochondrial fragmentation induced by TLR7/8-
stimulation leads to a shift toward glycolysis in CD1c+ mDC.

To further investigate the induction of glycolysis, we
determined glucose uptake in CD1c+ mDCs upon TLR7/8-
stimulation using 2-NBDG. Consistent with the increase in
ECAR, pRNA-stimulation significantly increased the uptake
of 2-NBDG in CD1c+ mDC, which could be prevented
by glycolysis inhibitor, 2-DG (Figure 4G). Additionally,
given the significant upregulation of ENO2 upon pRNA-
stimulation in CD1c+ mDC, we determined 2-NBDG uptake
in the presence of a specific Enolase inhibitor, SF2312 (59).
Consistently, the pRNA-induced 2-NBDG uptake in CD1c+

mDCs was significantly reduced in the presence of SF2312
(Figure 4H; Supplementary Figure 3). Similarly, S3 and Mdivi-
1 treatment significantly reduced pRNA-induced 2-NBDG
uptake (Figure 4H; Supplementary Figure 3A). Taken together,
these data indicate that mitochondrial fragmentation induced by
TLR7/8-stimulation leads to a shift toward glycolysis in CD1c+

mDC.

Next, we asked whether TLR7/8-stimulation induced
alteration in mitochondrial dynamics are required for
CD1c+ mDC activation. Importantly, pRNA stimulation
significantly increased TNFα production, which was attenuated
by S3 and Mdivi-1 (Figure 4I). Similarly, pRNA stimulation
significantly upregulated maturation markers i.e., CD80 and
PD-L1 on CD1c+ mDC, which were significantly inhibited
by S3 and Mdivi-1 (Figure 4J). By comparison, we observed
no effect of S3 and Mdivi-1 on pRNA-stimulated IFNα

(Supplementary Figure 3E) and CD80 and PD-L1 in pDC
(Supplementary Figure 3D). Collectively, these data indicate
that TLR7/8-induced mitochondrial fragmentation is required
for induction of glycolysis and immune response of CD1c+

mDC.

TLR7/8-Stimulation Triggers
BNIP3-Dependent Mitophagy in CD1c+

mDC
Mitophagy is a highly regulated autophagy process during which
damaged mitochondria are degraded and removed from the cell
(23, 60–62). Given the alteration in mitochondrial dynamics in
CD1c+ mDC upon TLR7/8-stimulation, we hypothesize that
mitophagy is induced in CD1c+ mDC. To this end, analysis
of autophagy-related genes revealed that pRNA-stimulation
significantly increased expression of EPG5, MAP1LC3A, DRAM1
& AMBRA1 (Figure 5A), indicating involvement of autophagy.
Consistent with increased expression of autophagy-related
genes, pRNA significantly increased autophagosomes in CD1c+

mDC (Figure 5B). Damaged mitochondria exhibit dissipated
membrane potential, which is the initial trigger for mitophagy
(22, 63). To test whether pRNA-stimulation affects mitochondrial
membrane potential (1ψ) in CD1c+ mDC, we measured 1ψ

using MitoTracker Red CMXRos, a red-fluorescent dye which
stains mitochondria in a membrane potential dependent
manner (64). Importantly, pRNA-stimulation significantly
induced 1ψ depolarization in CD1c+ mDC (Figure 5C).
Two distinct mitophagy pathways have been described. One
engages ubiquitination of OMM proteins via the PINK1/Parkin-
mediated pathway. Consequently, ubiquitinated proteins
recruit autophagosomal membrane via specific receptors,
which can recognize ubiquitin chains on mitochondrial
proteins and LC3 at autophagosomal membrane (65). The
other mitophagy pathway involves BNIP3, a Bcl-2 family
member that regulates mitophagy by associating itself on the
outer mitochondrial membrane (OMM) through C-terminal
transmembrane domain and interacts with LC3 through its
LC3-interacting region (LIR) domain located at N-terminal
part (66–68). To determine which mitophagy pathway is
involved upon TLR7/8-stimulation of CD1c+ mDC, the gene
expression data were examined. Interestingly, PINK1 did not
significantly change upon pRNA stimulation, whereas BNIP3 was
significantly increased in CD1c+ mDC upon pRNA-stimulation
(Supplementary Figure 2E).

To specify the involvement of BNIP3, the effect of
olomoucine, a transcriptional inhibitor of BNIP3 (69) on
TLR7/8-induced mitophagy in CD1c+ mDC was examined.
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FIGURE 3 | Autophagy provides glutamine for pDC activation. (A) Fluorescence intensity of autophagosomal marker CYTO-ID in pDC stimulated with pRNA for 6 h

***p < 0.001 (Student’s t-test). (B) Glutamine concentration measured by a coupled glutaminase, glutamate dehydrogenase assay with correction for glutamate

concentration. Data represents mean ± SEM of experiments from six donors. *p < 0.05; **p < 0.01 (Student’s t-test). (C) Mitochondrial fitness test of pDCs

stimulated with pRNA for 6 h in the presence or absence of 25µM 3-MA. Data represents mean ± SEM of three independent experiments. (D) Data was collected

within same experiments as (C) but is shown separately for better understanding. Data represents mean ± SEM of three independent experiments. **p < 0.01; ***p <

0.001 (Student’s t-test). (E) IFN-α levels on protein level were measured in the supernatant of the pDCs stimulated for 6 h. Data represents mean ± SEM of three

independent experiments. **p < 0.01; ***p < 0.001 (Student’s t-test). (F) Percentage mean flouresence intensity of maturation markers (CD80 and PD-L1) in pDCs

stimulated for 6 h. Data represents mean ± SEM of three independent experiments. *p < 0.05; **p < 0.01 (Student’s t-test).

Olomoucine significantly reduced steady state BNIP3
(Figure 5D) and the pRNA-induced increase of BNIP3 in
CD1c+ mDC (Figure 5D). Niclosamide is a transcriptional
inhibitor of S100A4 (70), which is transcriptional repressor

of of BNIP3 (71). Niclosamide increased BNIP3 expression in
CD1c+ mDC (Figure 5D). To quantitatively asses mitophagy
in CD1c+ mDC cells, we employed flow cytometry based
method (72). This approach is suitable to robustly assess
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FIGURE 4 | pRNA-stimulation alters mitochondrial morphology in CD1c+ mDC to induce glycolysis. (A) Heatmap showing expression of significantly changed genes

which regulate glycolysis in CD1c+ mDC upon pRNA-stimulation for 6 h. Red color indicates increased expression while blue color shows decreased expression. (B)

Mitochondrial fitness test of CD1c+ mDC stimulated with pRNA for 6 h in the presence or absence of 5µM S3 or 1µM Mdivi-1. Data represents mean ± SEM of

three independent experiments. (C–F) Data was collected within same experiments as (B), but is shown separately for better understanding. Data represents mean ±

SEM of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 (Student’s t-test). (G) Flow cytometry histograms of 2-NBDG stained CD1c+ mDC cells.

(H) Percentage mean fluorescence intensity of cells stained with 2-NBDG. Data represents mean ± SEM of four independent experiments *p < 0.05 (Student’s t-test).

(I) TNF-α levels on protein level were measured in the supernatant of the stimulated CD1c+ mDC cells stimulated for 6 h in the presence or absence of 5µM S3 or

1µM Mdivi-1. Data represents mean ± SEM of three independent experiments. **p < 0.01 (Student’s t-test). (J) Percentage mean fluorescence intensity of

maturation markers (CD80 and PD-L1) in CD1c+ mDC cells stimulated for 6 h in the presence or absence of 5µM S3 or 1µM Mdivi-1. Data represents mean ± SEM

of three independent experiments. *p < 0.05; **p < 0.01 (Student’s t-test).
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FIGURE 5 | pRNA-stimulation triggers BNIP3-dependent mitophagy in CD1c+ mDC. (A) Heatmap showing expression of significantly changed genes which regulate

autophagy in CD1c+ mDC upon pRNA-stimulation for 6 h. Red color indicates increased expression while blue color shows decreased expression. (B) Fluorescence

intensity of autophagosomal marker CYTO-ID in pDC stimulated with pRNA for 6 h ***p < 0.001 (Student’s t-test). (C) Percentage mean flouresence intensity of

CD1c+ mDC cells stained with MitoTracker Red stimulated with pRNA for 6 h. Data represents mean ± SEM of three independent experiments. *p < 0.05 (Student’s

t-test). (D) Flow cytometry histograms of BNIP3 in CD1c+ mDC cells in the presence or absence of 2µM niclosamide or 10µM olomoucine for 6 h. (E) Percentage

mean fluorescence intensity of CD1c+ mDC cells stained with MitoTracker Green stimulated with pRNA for 6 h in the presence or absence of 2µM niclosamide or

10µM olomoucine or 25µM 3-MA. Data represents mean ± SEM of three independent experiments **p < 0.01; ***p < 0.001 (Student’s t-test). (F) Mitophagy flux in

CD1c+ mDC stimulated with pRNA for 6 h. Data represents mean ± SEM of three independent experiments **p < 0.01; ***p < 0.001 (Student’s t-test).

mitophagy without need to perform traditional fluorescence
microscopy of mitochondrial-autophagosome colocalization
in BNIP3 transfected cells, in order to avoid transfection and
prolonged culture-induced cell death in rare human CD1c+

mDC cells. The reversal in alteration in MitoTracker upon
mitophagy inhibitors (i.e., olomoucine and 3-MA) indicates
induction of mitophagy and can be used to calculate mitophagic
flux (72). Of note, loss of pRNA-induced mitochondrial
content in CD1c+ mDC cells was significantly potentiated by

niclosamide, which augments BNIP3 expression (Figure 5E).
On other hand, loss of pRNA-induced mitochondrial content
in CD1c+ mDC cells was significantly reversed by olomoucine
and 3-MA (Figure 5E) indiacating induction of mitophagy.
Furthermore, analysis of mitophagic flux, revealed that
pRNA stimulation significantly increased mitophagic flux in
CD1c+ mDC (Figure 5F). This data indicates that TLR7/8-
stimulation triggers BNIP3-dependent mitophagy in CD1c+

mDC cells.
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TLR7/8-Stimulated BNIP3-Dependent
Mitophagy Is Indispensable For Induction
of Glycolysis and Activation of CD1c+ mDC
Notably, mitophagy has been reported to be required
for glycolytic switch in tumor cells (73). Given, the
metabolic reprogramming toward glycolysis in CD1c+

mDC upon TLR7/8 stimulation, we next asked whether
BNIP3-dependnet mitophagy is required for induction of
glycolysis in CD1c+ mDC. To investigate this, we monitored
EFA in the presence or absence of olomoucine and 3-MA
in CD1c+ mDC. Intriguingly, olomoucine and 3-MA
significantly prevented the pRNA-induced decrease in OCR
(Figure 6A; Supplementary Figure 4A), mitochondrial OCR
(Figure 6B), ATP-linked OCR (Supplementary Figure 4B),
maximal OCR (Supplementary Figure 4C) and SRC
(Supplementary Figure 4D) in CD1c+ mDCs. Moreover,
olomoucine and 3-MA prevented pRNA-stimulated uptake
of 2-NBDG (Figure 6C). These experiments indicate that
BNIP3-dependent mitophagy is indispensible for induction
of glycolysis in CD1c+ mDC upon TLR7/8 stimulation. To
elucidate the mechanism underlying BNIP3 regulation of
glycolysis, we examined the involvement of AMPK, which is
key regulator of metabolic homeostasis (74). pRNA stimulation
significantly reduced AMPK1α mRNA levels in CD1c+ mDC,
which were significantly rescued by olomoucine and 3-MA
(Figure 6D). Interestingly, mitophagy inhibition attenuated
TLR7/8-stimulated immune response in CD1c+ mDC, as
olomoucine and 3-MA significantly reduced pRNA-stimulated
TNFα levels (Figure 6E). Moreover, the pRNA-induced increase
in maturation markers CD80 and PD-L1 was significantly
decreased in the presence of olomoucine and 3-MA (Figure 6F).
By comparison, olomoucine had no effect on pRNA stimulated
IFNα (Supplementary Figure 3E) and CD80 and PD-L1 in
pDC (Supplementary Figure 3D). Of note, 2-DG, SF2313,
Mdivi-1, S3, 3-MA, olomoucine and niclosamide did not affect
viability of CD1c+ mDC alone or in combination with pRNA
(Supplementary Figures 5, 6). Collectively, these data suggest
that TLR7/8-stimulated BNIP3-dependent mitophagy is crucial
for induction of glycolysis, which contributes to CD1c+ mDC
activation.

DISCUSSION

Changes in metabolism following TLR stimulation are
indispensable for DC activation. However, the metabolic
signature generated in naturally occurring human DCs in
response to TLR-stimulation is not known in detail. Herein,
we investigated TLR-induced metabolic changes in two
human blood DC-subsets, CD1c+ mDC and pDC. Our
data show that TLR stimulation results in a differential
mitochondrial rewiring in pDC and CD1c+ mDC. We
have focused on mitochondria as metabolic hubs critical
for signals downstream of innate receptors in myeloid cells
(75). Promotion of mitochondrial fusion results in increased
OXPHOS activity via formation of supercomplexes (76).
Supercomplex reorganization in macrophages is also driven by

innate sensing of microbes, regulating macrophage cytokine
production (77). Conversely, mitochondrial fission results in
decreased OXPHOS activity and induction of glycolysis (21).
Interestingly, mitochondrial dynamics play an important
role in differentiation and migration of immature DC
(78). Mitochondrial fusion proteins are upregulated during
differentiation of bone marrow progenitors to immature DC.
Mitochondrial fusion-related proteins i.e., Mfn2 and Opa1
have been shown to be required for migration of immature DC
(78).

Here, we investigated the role of mitochondrial dynamics in
regulating immune function of human DC subsets. We find that
stimulation of pDCs with TLR7/8 agonist increases expression
of PGC1α and Mfn2, which suggests increase in mitochondrial
mass. Indeed, we observed that TLR7/8-stimulation resulted
in increased mitochondrial mass in pDC, as demonstrated
by MitoTracker Green and Porin levels. Moreover, PGC-1α
positively regulates mitochondrial fusion by stimulating Mfn2
expression via targeting the Mfn2 promoter in an ERRα-binding
element-dependent manner (79). Importantly, increased Mfn2
expression results in increased glucose oxidation and expression
of OXPHOS complex I, IV and V (80). Consistently, we observed
increased expression of OXPHOS related genes and protein
levels of NDUFA10 upon TLR7/8-stimulation in pDC, indicating
upregulation of OXPHOS. Taken together, these data indicate
that TLR7/8 stimulation increases mitochondrial fusion, mass
and increased OXPHOS activity in pDC. Conversely, pRNA
stimulation of CD1c+ mDCs results in increased expression
of Drp1, which contributes to mitochondrial fission (81, 82),
which lead to decrease in mitochondrial mass as shown by
decreased levels of MitoTracker Green and Porin. Mitochondrial
fission promotes a shift to aerobic glycolysis (58, 83, 84). Our
data shows that TLR-stimulation leads to increased glycolysis
in CD1c+ mDC. Increased expression of Drp1 together with
decreased expression of NDUFA10 and mitochondrial mass,
in CD1c+ mDC indicates induction of mitochondrial fission,
which is linked to glycolysis (21, 85, 86). Intriguingly, Drp1
has been demonstrated to be required for the activation of
bone marrow-derived DCs upon LPS-stimulation (87). It has
been reported that TLR-stimulated metabolic reprogramming is
required to meet the energy demand for the activation process
in DC (14, 16, 88). Of note, our data show that mitochondrial
dynamics modulate expression of inflammatory mediators (i.e.,
TNFα, CD80, and PD-L1) in human DC-subsets. Our data
highlights the importance of mitochondrial remodeling in innate
sensing.

Both fission and fusion proteins also play a key role in
mitophagy regulation. Upon stress, Drp1 specifically splits
a mitochondrion into a healthy fraction and a damaged
fraction, to promote degradation of damaged fraction via
mitophagy (23). To this end, our data show that TLR-stimulation
induces BNIP3-dependent mitophagy in CD1c+ mDC.
Additionally, we demonstrate that TLR-stimulated mitophagy
and glycolysis are essential for CD1c+ mDC activation. We
further demonstrate induction of Enolase-dependent glycolysis
in CD1c+ mDC upon TLR-stimulation. Consistently, ENO2
inhibition impairs CD1c+ mDC maturation and activation.
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FIGURE 6 | Mitophagy is indispensable for induction of glycolysis and activation of CD1c+ mDC (A) Mitochondrial fitness test of CD1c+ mDC stimulated with pRNA

for 6 h in the presence or absence of 10µM olomoucine or 25µM 3-MA. Data represents mean ± SEM of three independent experiments. (B) Data was collected

within same experiments as (A) but is shown separately for better understanding. Data represents mean ± SEM of three independent experiments. *p < 0.05; **p <

0.01 (Student’s t-test). (C) Flow cytometry histograms of 2-NBDG stained CD1c+ mDCs stimulated with pRNA pDC for 6 h. (D) AMPKα1 mRNA levels were analyzed

after 6 h of pRNA stimulation by (qPCR) and normalized to β-actin expression by using the 211CT method. Data represents Mean±SEM of three independent

experiments **p < 0.01; ***p < 0.001 (Student’s t-test). (E) TNF-α levels on protein level were measured in the supernatant of the CD1c+ mDC stimulated for 6 h.

Data represents mean ± SEM of three independent experiments **p < 0.01 (Student’s t-test). (F) Percentage mean flouresence intensity of maturation markers (CD80

and PD-L1) in CD1c+ mDC cells stimulated for 6 h in the presence or absence of 10µM olomoucine or 25µM 3-MA. Data represents mean ± SEM of three

independent experiments *p < 0.05 (Student’s t-test). (G) Proposed model of human DC-subsets activation via TLR7/8 agonist (CD1c+ mDC) TLR-stimulation

reduces mitochondrial content, OXPHOS activity and induces glycolysis in CD1c+ mDC. TLR-stimulation in CD1c+ mDCs results in depolarized mitochondrial

membrane potential (1ψ) and triggers BNIP3-dependent mitophagy which is required for induction of glycolysis and activation of CD1c+ mDC (pDC) TLR-stimulation

increases OXPHOS and mitochondrial content as result of increased protein levels of Mfn2 and PGC1α in pDC. Moreover, TLR-stimulation in pDC increases

intracellular glutamine in an autophagy-dependent manner. TLR-induced glutaminolysis fuels increases OXPHOS in pDCs which are indispensable for pDC activation.
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These results implicate increased glycolysis for proficient antigen
processing and presentation by CD1c+ mDC to induce a
robust immune response. Previously, Chlamydia infection was
shown to increase mitochondrial permeability in parallel with
mitochondrial remodeling in Enolase1 (ENO1)-dependent
manner in mouse bone marrow-derived DCs (89). Intriguingly,
BNIP3-dependent mitophagy contributes to mitochondrial
elimination during polarization toward pro-inflammatory and
glycolytic macrophages (90).

Of note, metabolic reprogramming toward glycolysis is
regulated by mitophagy, as mitophagy inhibition reduced
expression of glycolysis regulators e.g., PFKFB3, HK2, GAPDH,
and PKM2 (90). Therefore, it is conceivable that BNIP3-
dependent mitophagy similarly controls glycolysis regulators in
CD1c+ mDC. We found that BNIP3 regulates transcriptional
activity of AMPKα1. AMPK is a negative regulator of
aerobic glycolysis (91). Intriguingly, AMPK activation has
been reported to antagonize glycolytic switch in DCs (14).
Our data shows that TLR7/8-stimulation decreases AMPKα1
which can be restored upon BNIP3 inhibition. In contrast,
loss of BNIP3 has been reported to reduce AMPK activity
in liver (92). However, recent studies have demonstrated that
AMPK activation can also be regulated via reactive oxygen
species (ROS) (93). Of note, mitophagy regulates ROS (19),
which in turn can act as transcription factor to control
gene expression (94). Therefore, it is possible that BNIP3
inhibition reduces mitophagy, which in turn suppresses ROS
levels to modulate AMPKα1 in CD1c+ mDC. Glycolysis is
also required for canonical activation of the inflammasome
in macrophages (95, 96). Interestingly, TLR-stimulation has
been shown to induce inflammasome activation in CD1c+

mDC (97). Intriguingly, autophagy negatively regulates NLRP3
inflammasome activation in macrophages and bone marrow
derived DC (98, 99). Moreover, mitophagy prevents hyper-
inflammation triggered by NLRP3 inflammasome activation
in macrophages (100). Our data show that mitophagy is
indispensable for CD1c+ mDC activation. Collectively, our
data suggest a scenario in which TLR-stimulation results in
mitochondrial fission leading to induction of mitophagy, which
in turn regulates glycolysis via AMPKα1 to activate CD1c+

mDC.
It has been demonstrated that autophagy is required for

production of type I IFNs in pDC following TLR7 signaling
in vitro and in vivo (48–52). To this end, TLR7-stimulated
autophagy deficient pDCs are unable to produce IFNα,
in comparison to their autophagy proficient counterparts
(48, 49). We here demonstrate that autophagy serves to
provide glutamine to fuel OXPHOS in pDC upon TLR-
stimulation, similar to mechanisms previously shown in
tumor cells (54–56). Our data show that TLR-stimulation
in pDCs increases cellular glutamine levels in an autophagy
dependent-manner. Additionally, autophagy inhibition
abrogates glutamine fueled OXPHOS in pDCs upon TLR
stimulation. Autophagy is involved in regulating several
DC functions e.g., DC maturation, antigen presentation,
cytokine production, DC migration and T-cell activation (101).
Herein, we provide novel insight into pDC innate sensing

mechanism by providing link between autophagy and type I IFN
production by demonstrating that autophagy serves to provide
glutamine, which is required for IFNα production. Conversely,
selective autophagy i.e., mitophagy is required for induction
of glycolysis via AMPKα1 regulation. Thus, our data provides
novel mechanistic insight in differential role of autophagy
in human DC subsets that can lead to immunostimulatory
phenotype.

TLR stimulation triggers a shift in metabolism toward aerobic
glycolysis, in human mDCs and mouse bone-marrow derived
DCs (BMDCs), which is indispensable for the immune effector
function and survival of DCs (14, 15, 102, 103). This shift toward
glycolysis is required to support the metabolic requirements
coupled with increased protein synthesis, which contributes
to DC immunogenicity. This TLR-induced surge in glycolysis
initiates de novo fatty acid synthesis through glucose-dependent
citrate metabolism, which sustains the synthesis and secretion
of inflammatory cytokines (103, 104). Furthermore, disrupting
the glucose-to-citrate pathway reduces DC maturation, cytokine
secretion and in turn T cell stimulatory capacity. Influenza
virus (flu), Rhinovirus (RV) and a TLR7 agonist induce
early glycolysis in human pDC, which is required for type I
IFN production and upregulation of HLA-DR, CD80, CD86
(105). However, the generated type I IFN can in turn signal
through IFNAR in a paracrine way to trigger FAO and
OXPHOS in pDC (16). We find increased glutamine levels
after TLR-stimulation in pDC. Of note, glutaminase inhibition
in pDCs attenuated OXPHOS, suggesting that glutaminolysis
drives OXPHOS induction in response to TLR stimulation
in pDC. The requirement of glutamine for various immune
effector functions has been demonstrated, e.g., LPS-driven
inflammatory response in succinate-dependent anaplerosis (106,
107). However, these reports show that activity of glutamine
depends on glycolysis. In contrast, it has also been reported
that glutamine drives glucose-independent TCA cycle (108).
Additionally, glutamine has been demonstrated to be required
for trained immunity in monocytes (109), for activated T
cells to fuel metabolism (110) and cytokine production by
lymphocytes and macrophages (111). Tumor associated M2-like
macrophages utilize glutamine for TCA cycle activity, which is
required for M2 polarization (112). Moreover, tumor associated
macrophages in glioblastoma show increased glutamate transport
and metabolism (113). Intriguingly, glutaminolysis has been
reported to be dispensable for mouse bone marrow-derived
DCs cultured in the presence of GM-CSF for activation upon
TLR-stimulation (114). Moreover, it is possible that type I IFN
paracrine signaling in TLR-stimulated pDC contributes to the
induction of fatty acid oxidation, as shown for CpG stimulated
murine pDC (16).

Our study provides several novel insights into TLR-
stimulatedmetabolic adaptations in humanDC subsets. Our data
demonstrate that different DC-subsets engage distinct metabolic
adaptations in a mitochondrial dynamics-dependent manner
following TLR stimulation. Furthermore, our study provides
novel mechanistic insights in human DC-subset metabolism
by demonstrating the involvement of mitophagy dependent-
glycolysis in CD1c+ mDC and autophagy supplemented
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glutaminolysis for OXPHOS in pDC (Figure 6G). As metabolic
manipulation results in modulation of DC activation, our results
may have important implications in development of DC-based
therapies.
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Supplementary Figure 1 | (A–D) Data were collected within the same

experiments as Figure 2C but are shown separately for clarity. Data represents

mean ± SEM of three independent experiments. ∗∗∗p < 0.001 (Student’s t-test).

(E–H) Data were collected within the same experiments as Figure 3C but are

shown separately for clarity. Data represents mean ± SEM of three independent

experiments. ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t-test).

Supplementary Figure 2 | (A–D) Data were collected within the same

experiments as Figure 4B but are shown separately for clarity. Data represent

mean ± SEM of three independent experiments. ∗∗∗p < 0.001 (Student’s t-test).

(E) Relative gene expression of mitophagy related genes in CD1c+ mDC. Data

represents mean ± SEM of three independent experiments. ∗p < 0.05; ∗∗p <

0.01 (Student’s t-test).

Supplementary Figure 3 | (A) Depicted is the mean fluorescence intensity of

cells stained with 2-NBDG as percentage of the mean fluorescence intensity of

control cells ± SEM of four independent experiments ∗p < 0.05 (Student’s t-test).

(B) TNF-α levels on protein level were measured in the supernatant of the CD1c+

mDC stimulated for 6 h in the presence or absence of 10 nM rotenone or 10 nM

antimycin A. Data represents mean ± SEM of three independent experiments ∗∗p

< 0.01 (Student’s t-test). (C) Percentage mean fluorescence intensity of

maturation markers (CD80 and PD-L1) in CD1c+ mDCs stimulated for 6 h in the

presence or absence of 10 nM rotenone or 10 nM antimycin A. Data represents

mean ± SEM of three independent experiments. ∗∗p < 0.01 (Student’s t-test). (D)

IFN-α levels on protein level were measured in the supernatant of the pDC

stimulated for 6 h in the presence or absence of either 5µM S3 or 1µM Mdivi-1 or

10µM olomycine. Data represents mean ± SEM of three independent

experiments ∗∗∗p < 0.001 (Student’s t-test). (E) Percentage mean fluorescence

intensity of maturation markers (CD80 and PD-L1) in pDC stimulated for 6 h in the

presence or absence of either 5µM S3 or 1µM Mdivi-1 or 10µM olomycine. Data

represents mean ± SEM of three independent experiments. ∗∗p < 0.01; ∗p <

0.05 (Student’s t-test).

Supplementary Figure 4 | (A–D) Data was collected within same experiments as

6A, but is shown separately for better understanding. Data represents mean ±

SEM of three independent experiments. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

(Student’s t-test).

Supplementary Figure 5 | CD1c+ mDC were stimulated with pRNA for 12 h in

the presence or absence of 5mM 2-DG or 500 nM SF2312 or 1µM Mdivi-1.

CD1c+ mDCs were stained with Fixable Viability Dye eFluorTM 780.

Supplementary Figure 6 | CD1c+ mDC were stimulated with pRNA for 12 h in

the presence or absence of 5µM S3 or 25µM 3-MA or 10µM olomoucine or

2µM niclosamide. CD1c+ mDCs were stained with Fixable Viability Dye eFluorTM

780.

Supplementary Figure 7 | PDC were stimulated with pRNA for 12 h in the

presence or absence of 5µM BPTES or 10µM DON or 25µM 3-MA. pDCs were

stained with Fixable Viability Dye eFluorTM 780.

Supplementary Figure 8 | PDC were stimulated with pRNA for 12 h in the

presence or absence of 10 nM rotenone or 10 nM antimycin A. pDCs were stained

with Fixable Viability Dye eFluorTM 780.
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