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BACKGROUND In response to pressure overload, the heart develops ventricular hypertrophy that progressively de-

compensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase

calcineurin and is characterized by metabolic changes that impair energy production by mitochondria.

OBJECTIVES The authors aimed to determine the role of the calcineurin splicing variant CnAb1 in the context of cardiac

hypertrophy and its mechanism of action.

METHODS Transgenic mice overexpressing CnAb1 specifically in cardiomyocytes and mice lacking the unique C-terminal

domain in CnAb1 (CnAb1Di12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction.

Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses.

RESULTS In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAb1

in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of

serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein

oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAb1 is

dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAb1.

CnAb1Di12 mice show increased cardiac hypertrophy and declined contractility.

CONCLUSIONS The metabolic reprogramming induced by CnAb1 redefines the role of calcineurin in the

heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on

cardiac hypertrophy and function, paving the way for new therapeutic approaches. (J Am Coll Cardiol 2018;71:654–67)
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AB BR E V I A T I O N S

AND ACRONYM S

ATF4 = activating

transcription factor 4

BSO = L-buthionine-

sulfoximine

GSH = reduced glutathione

LVEF = left ventricular

ejection fraction

LVMi = left ventricular mass

index

mTOR = mechanistic target of

rapamycin

NFAT = nuclear factor of

activated T cells

qRT-PCR = quantitative

reverse-transcription real-time

polymerase chain reaction

TAC = transaortic constriction

WT = wild-type
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C ardiac hypertrophy progressively decom-
pensates and becomes maladaptive, leading
to pathological cardiac remodeling and heart

failure (1). Maladaptive cardiac hypertrophy is accom-
panied by interstitial and perivascular fibrosis and by
changes in cardiac metabolism. The hypertrophic
heart progressively reverts to an embryonic metabolic
program with reduced fatty acid oxidation and
increased reliance on glucose metabolism that result
in decreased ATP production (2).

The calcium-regulated phosphatase calcineurin
plays a major role in pathological hypertrophy. Cal-
cineurin is composed of a catalytic (CnA) and a reg-
ulatory (CnB) subunit. CnA is encoded by 3 different
genes (resulting in CnAa, CnAb, and CnAg), with
CnAb being the main isoform in the heart. Two splice
variants for CnAb have been described. Although
CnAb2 has a C-terminal autoinhibitory domain and
acts like a typical CnA, CnAb1 has a unique C-terminal
domain, not shared by any other known protein, that
confers these isoform specific properties (3–6).

Constitutive activation of calcineurin or its main
target, the transcription factor nuclear factor of acti-
vated T cells (NFATc), leads to massive maladaptive
cardiac hypertrophy (7). By contrast, mice lacking
CnAb show reduced ventricular hypertrophy in
response to pressure overload (8). However, the role
of CnAb1 in this context is unknown.
SEE PAGE 668
METHODS

Full Methods can be found in the Online Appendix.

MICE. aMHC-CnAb1 mice express the human CnAb1
isoform in a cardiomyocyte-restricted manner under
the control of the alpha myosin heavy chain (aMHC)
promoter (4). CnAb1Di12 mice were generated by de-
leting intron 12-13 in the gene that encodes CnAb
(Ppp3cb), which encodes the unique C-terminal
domain in CnAb1. Only adult male mice were used in
this study. All procedures were approved by the
ethics committees of the CNIC and the Regional
Government of Madrid.

SURGERIES AND ECHOCARDIOGRAPHIC ANALYSIS.

Maladaptive cardiac hypertrophy was induced by
transaortic constriction (TAC) trying to reproduce the
human condition as much as possible (9). Where
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indicated, L-buthionine-sulfoximine (BSO)
(3 g/l in drinking water) or NCT-503
(0.9 mg/mouse, daily intraperitoneal injec-
tion) was administered for 21 days, starting
on the day of the surgery. Transthoracic
echocardiography was performed blindly us-
ing an ultra–high-resolution echocardiogra-
phy system with a linear 30-MHz transducer.
Two-dimensional and M-mode echocardiog-
raphy in parasternal long- and short-axis
views were performed blinded as previously
described and recorded for posterior blinded
analysis (3).

RESULTS

CnAb1 OVEREXPRESSION REDUCES CARDIAC

HYPERTROPHY. To determine the effect of
CnAb1 overexpression on the heart in the
context of maladaptive cardiac hypertrophy,

we used aMHC-CnAb1 transgenic mice that over-
express CnAb1 in a cardiac-specific manner (Online
Figures 1A and 1B) (4). We induced pressure over-
load in wild-type (WT) and transgenic mice by TAC,
and we analyzed cardiac function 21 days later.
Transgenic mice showed a significantly reduced heart
weight to body weight ratio after TAC compared with
WT mice (Figure 1A). Similarly, echocardiographic
analysis revealed a reduced left ventricular mass in-
dex (LVMi) and thinner posterior wall and interven-
tricular septum in CnAb1-overexpressing mice after
TAC compared with WT mice (Figures 1B–1D). In
agreement with the echocardiography results, trans-
genic mice showed a more limited increase in car-
diomyocyte size (Figure 1E). Importantly, whereas
contractility declined in WT mice 21 days after TAC, it
was preserved in CnAb1-overexpressing mice, as
shown by improved left ventricular ejection fraction
(LVEF) (Figure 1F). Transgenic mice also showed a
limited increase in the expression of the HF markers
atrial natriuretic factor (ANF) and brain natriuretic
peptide (BNP), which were strongly induced in WT
mice (Online Figures 1C and 1D).

Pressure overload hypertrophy was characterized
by both interstitial and perivascular fibrosis in WT
mice (Figures 1G to 1J). Transgenic mice showed
significantly reduced cardiac fibrosis with levels
similar to those of sham-operated mice. In agreement
the contents of this paper to disclose. Drs. Padrón-
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FIGURE 1 CnAb1 Overexpression Reduces Cardiac Hypertrophy
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with these results, we also observed reduced expres-
sion of the fibrosis markers collagen Ia1 (Col1a1) and
lysyl oxidase (Lox) in CnAb1-overexpressing mice,
together with reduced levels of SMAD2 phosphoryla-
tion, suggesting reduced TGF-b signaling (Online
Figures 1E to 1G).

To confirm the functional improvement elicited by
CnAb1 in a second transgenic mouse line, we used
rtTA-CnAb1 mice in which CnAb1 expression is
induced w3-fold upon treatment with doxycycline
(3). We found that CnAb1 overexpression significantly
reduced the left ventricular mass and improved sys-
tolic function 42 days after TAC, confirming the re-
sults obtained in aMHC-CnAb1 mice (Online Figure 2).
Together, these results demonstrate that CnAb1, un-
like other calcineurin isoforms, reduces maladaptive
hypertrophy and cardiac remodeling following pres-
sure overload.

CnAb1 OVEREXPRESSION DOES NOT INTERFERE

WITH NFAT ACTIVATION. To determine whether
CnAb1 overexpression interferes with the activation
of the endogenous NFAT pathway, we first quantified
the expression of Rcan1 isoforms. TAC induced a
significant increase of the Rcan1.4 isoform, which is
strongly regulated by NFAT, but not the Rcan1.1 iso-
form. No difference in the expression of Rcan1.4 was
observed between WT and aMHC-CnAb1 mice
(Figures 2A and 2B). To confirm the activation of the
NFAT pathway, we crossed WT and aMHC-CnAb1
mice with a reporter mouse line in which the
expression of luciferase is controlled by NFAT bind-
ing sites. A strong NFAT activation was observed in
both WT and transgenic mice in response to pressure
overload, as determined by luciferase activity,
without any substantial change between both mouse
types (Figure 2C). These results indicate that CnAb1
overexpression does not interfere with NFAT activa-
tion in cardiac hypertrophy.

CnAb1 ACTIVATES SERINE AND ONE-CARBON

METABOLISM. We next analyzed the transcription
profile of WT and transgenic mice using microarrays.
Following TAC, WT mice showed a consistent
FIGURE 1 Continued

(A) Pressure overload cardiac hypertrophy was induced in wild type (WT)

body weight ratio was determined 21 days after surgery, compared with

echocardiography 21 days after surgery. (E) Cardiomyocyte cross-sectio

echocardiography. Interstitial (G and H) and perivascular (I and J) cardia

Bar indicates 100 mm. Interstitial fibrosis was quantified as the percenta

calculated as the perivascular collagen area relative to the vessel area.

**p < 0.01, ***p < 0.005 TAC versus sham for each mouse line; †p < 0

of variance plus Bonferroni post-test. n ¼ 12 to 18. CSA ¼ cross-section

septum thickness in diastole; LVEF ¼ left ventricular ejection fraction; L

thickness in diastole.
up-regulation of genes associated with extracellular
matrix, cell adhesion, and fibrosis (Online Tables 1
and 2) and a down-regulation of genes associated
with the mitochondria (Online Tables 3 and 4).

Interestingly, sham aMHC-CnAb1 mice showed a
strong up-regulation of the genes involved in serine
synthesis, phosphoglycerate dehydrogenase (Phgdh),
and phosphoserine aminotransferase 1 (Psat1), and in
the one-carbon pathway, including methyltetrahy-
drofolate dehydrogenase 2 (Mthfd2) and aldehyde
dehydrogenase 1 L2 (Aldh1l2) (Figure 2D, Online
Tables 5 to 8). Using quantitative reverse-
transcription real-time polymerase chain reaction
(qRT-PCR), we confirmed the significant induction of
Phgdh, Psat1, Shmt2, Mthfd2, and Aldh1l2 genes in
aMHC-CnAb1 mice, after both sham and TAC surgery
(Figures 2E to 2I). In addition, most of these genes, as
well as CnAb1 itself, showed smaller, but significant,
expression changes in WT mice following TAC (Online
Figure 3), suggesting that endogenous CnAb1 and the
serine and one-carbon pathway may play a role in the
response to pressure overload.

Although no gene categories changed significantly
in transgenic mice after TAC (Online Tables 9 to 12),
aMHC-CnAb1 mice showed reduced expression of
extracellular–matrix-related genes compared with
WT (Online Tables 13 to 16), which was confirmed by
qRT-PCR (Online Figures 1E and 1F).

We then carried out a quantitative proteomics
analysis of sham WT and transgenic mice, which also
showed a strong increase in proteins involved in the
serine and one-carbon pathway in aMHC-CnAb1 mice
(Online Table 17, Figure 2D), confirming that serine
and one-carbon metabolism was strongly induced in
the heart by CnAb1.

Many of these genes are regulated by the mTOR
signaling pathway through the transcription factor
activating transcription factor 4 (ATF4) (4,10). To
determine whether this pathway was activated
by CnAb1 in the context of pressure overload, we
analyzed these proteins by Western blot. We observed
activation of the mTOR/AKT signaling pathway and
increasedexpressionofATF4 inCnAb1-overexpressing
and aMHC-CnAb1 mice by transaortic constriction (TAC) and the heart weight to

sham-operated animals. LVMi (B), LVPWd (C), and IVSd (D) were determined by

nal area was analyzed by immunohistochemistry. (F) LVEF was determined by

c fibrosis were analyzed 21 days after TAC using Masson’s trichrome protocol.

ge of area in each picture that is stained as collagen. Perivascular fibrosis was

At least 2 pictures per mouse were analyzed. Values represent average � SEM.

.05, ††p < 0.01, †††p < 0.005 WT versus transgenic mice; 2-way analysis

al area; HW/BW ¼ heart weight to body weight ratio; IVSd ¼ interventricular

VMi ¼ left ventricular mass index; LVPWd ¼ left ventricular posterior wall
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FIGURE 2 CnAb1 Activates the Serine and One-Carbon Metabolic Pathway Without Interfering With NFAT-Mediated Transcription
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Expression of the Rcan1.4 (A) and Rcan1.1 (B) mRNA was analyzed by qRT-PCR 21 days after TAC. (C) WT and aMHC-CnAb1 mice were crossed with reporter mice in

which luciferase expression is controlled by an NFAT binding site multimer. Luciferase activity normalized to total protein content was analyzed in heart extracts

21 days post-TAC. (D) Summary of genes involved in the serine and one-carbon pathway. Components induced in aMHC-CnAb1 mice are indicated by a blue fill (mRNA,

metabolites) or purple border (protein). Expression of Phgdh (E), Psat1 (F), Shmt2 (G), Mthfd2 (H), and Aldh1l2 (I) was quantified as in (A). Values express average �
SEM. *p < 0.05, **p < 0.01 TAC versus sham for each mouse line; †p < 0.05, ††p < 0.01, †††p < 0.005 WT versus transgenic mice; 2-way analysis of variance plus

Bonferroni post-test. n ¼ 10 to 15 (A, B, and E–I); n ¼ 5 to 12 (C). 3PG ¼ 3-phosphoglycerate; 3P-Ser ¼ 3-phosphoserine; Gly ¼ glycine; NAD(P) ¼ nicotinamide adenine

dinucleotide phosphate; NAD(P)H ¼ nicotinamide adenine dinucleotide phosphate (reduced form); NFAT ¼ nuclear factor of activated T cells; qRT-PCR ¼ quantitative

reverse-transcription real-time polymerase chain reaction; Ser ¼ serine; THF ¼ tetrahydrofolate; other abbreviations as in Figure 1.
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FIGURE 3 mTOR Mediates the Activation of the Serine One-Carbon Pathway by CnAb1
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(A) Phosphorylation and/or expression of mTOR, Akt, and ATF4 was analyzed by Western blot in myocardial samples from the indicated mice

21 days after surgery. (B to D) WT and aMHC-CnAb1 uninjured mice were treated with rapamycin for 5 days, and the expression of Phgdh,
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mice (Figure 3A), consistent with our previous results
(3,4). To investigate whether mTOR mediates the
induction of the serine and one-carbon pathway by
CnAb1, we treated uninjured WT and transgenic mice
with the mTOR inhibitor rapamycin, and we analyzed
the mice 5 days later. As shown in Figures 3B to 3D,
mTOR inhibition partially abolished the induction of
Phgdh, Psat1, and Mthfd2 in aMHC-CnAb1 mice,
indicating that CnAb1 activates the serine and one-
carbon pathway through mTOR signaling.
CnAb1 OVEREXPRESSION CHANGES THE HEART’S

METABOLOME. Phdgh-derived serine synthesis and
the one-carbon cycle supply metabolites for the pro-
duction of antioxidant mediators such as glutathione
(11,12). A thorough metabolomic analysis in uninjured
WT and aMHC-CnAb1 mice detected a total of
462 different metabolites in myocardial samples
from both mouse types, with 133 of them being up-
regulated in transgenic mice and 65 metabolites
down-regulated (Online Table 18). A principal
component analysis showed strong separation of
the samples, suggesting a different metabolic profile
in WT and CnAb1-overexpressing mice (Online
Figure 4A). Using Metabolomic Pathway Analysis, we
found a strong enrichment of metabolites related to
glutathione, amino acid, and nucleotide metabolic
pathways (Online Figure 4B).

To explore these changes more in depth, we
analyzed the amount of different metabolites
belonging to the affected pathways. We found a
strong significant induction of glutathione, mainly
reduced glutathione (GSH), and its precursor metab-
olites (Online Figures 4C and 5, Online Table 18). This
was accompanied by a significant induction of
methionine metabolites (Online Figure 4D). In addi-
tion, aMHC-CnAb1 mice showed a significant increase
of several metabolites associated with polyamine
metabolism and the urea cycle, mainly related to the
degradation of arginine to ornithine, putrescine, and
spermidine (Online Figure 4E, Online Table 18). We
also found that several metabolites related to purine
and pyrimidine metabolism were up-regulated,
leading to a strong induction of the potent antioxi-
dant urate (Online Table 18). These changes were
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FIGURE 4 CnAb1 Reduces the Oxidative Damage After Pressure Overload and Improves ATP Synthesis
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paralleled by a strong increase in another antioxi-
dant, ascorbate (Online Figure 4F). Together, these
changes indicated that CnAb1 activates several
metabolic pathways with antioxidant activity.
MITOCHONDRIAL COMPLEXES SHOW INCREASED

ACTIVITY IN CnAb1-OVEREXPRESSING MICE. To
determine whether the changes in the metabolic
profile observed in transgenic mice would impact
mitochondrial number or activity, we analyzed
different parameters in uninjured mice. We first
quantified mitochondrial DNA and found no signifi-
cant differences between WT and aMHC-CnAb1 mice,
although a small increase was observed in transgenic
mice (Online Figure 6A). Analysis of mitochondrial
complexes and supercomplexes in isolated mito-
chondria revealed no differences between both mouse
types (Online Figure 6B). Similarly, we observed no
obvious differences in the expression of individual
complex components by Western blot (Online
Figure 6C). Analysis of the activity of the different
mitochondrial complexes showed a significant in-
crease in the activity of complexes IþIII and IIþIII in
aMHC-CnAb1 mice (Online Figure 6D). In addition, we
observed increased citrate synthase activity in trans-
genic mice, in agreement with the increase in citrate
detected by mass spectrometry (Online Table 18) and
with the slight increase in mtDNA copy number
(mitochondrial mass). These changes in the activity of
mitochondrial complexes, however, had no effect on
the production of ATP by isolated mitochondria,
neither driven by glutamate and malate nor by succi-
nate (Online Figure 6E).

CnAb1 REDUCES PROTEIN OXIDATION AND IMPROVES ATP

SYNTHESIS FOLLOWING PRESSURE OVERLOAD. We next
investigated whether the changes observed in unin-
jured mice were reproduced in the hypertrophic
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FIGURE 5 Inhibition of Serine Synthesis From Glucose Abolishes the Beneficial Effects of CnAb1
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heart. Using an enzymatic assay, we found an in-
crease in GSH in aMHC-CnAb1 mice compared with
WT, which was more evident 21 days after TAC
(Figure 4A). We also found an increase in total gluta-
thione in transgenic mice, albeit at much lower levels
(Figure 4B). We observed a strong reduction in the
production of ATP by mitochondria isolated from WT
mice after TAC, both driven by glutamate and malate
(Figure 4C) and by succinate (Figure 4D). By contrast,
mitochondria from aMHC-CnAb1 mice showed pre-
served ATP production level after TAC, significantly
higher than that of WT mice (Figures 4C and 4D). Us-
ing the GELSILOX technique (13), we observed an
increase in oxidized peptides from mitochondrial
proteins, particularly those related to the Krebs cycle,
and from muscle contraction proteins in WT mice
21 days after TAC (WT-TAC mice) (Figures 4E and 4F,
Online Tables 19 to 21). Interestingly, aMHC-CnAb1
mice subjected to TAC showed reduced oxidation of
the same peptide populations in comparison to WT-
TAC mice (Figures 4E and 4F), suggesting that the
antioxidant response elicited by CnAb1 prevents
mitochondrial and sarcomere protein oxidation, and
hence improves ATP production and cardiac
contraction.
ACTIVATION OF THE SERINE AND ONE-CARBON

PATHWAY IS NECESSARY FOR THE INDUCTION OF

ATP AND REDUCTION OF CARDIAC HYPERTROPHY

BY CnAb1. To determine the functional relevance of
the activation of serine one-carbon metabolism by
CnAb1, we treated WT and transgenic mice for 21 days
after TAC surgery with the PHGDH inhibitor NCT-503,
which blocks the synthesis of serine from glucose and
its contribution to the one-carbon pathway (14).
Treatment of aMHC-CnAb1 mice with NCT-503 resul-
ted in increased LVMi and reduced LVEF compared
with untreated transgenic mice (Figures 5A and 5B).
Furthermore, NCT-503 prevented the improved ATP

https://doi.org/10.1016/j.jacc.2017.11.067


FIGURE 6 Glutathione Is Necessary for the Functional Improvement Induced by CnAb1 After Pressure Overload
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synthesis induced by CnAb1, both from glutamate and
malate, and from succinate. Transgenic mice showed
similar ATP levels to those of WT mice and signifi-
cantly reduced compared with untreated aMHC-
CnAb1 mice (Figures 5C and 5D). These data indicate
that the serine and one-carbon pathway is necessary
for the beneficial effects of CnAb1 on the heart.

GLUTATHIONE MEDIATES THE IMPROVED RESPONSE TO

PRESSURE OVERLOAD IN aMHC-CnAb1 MICE. To find out
whether the increase in reduced glutathione was also
responsible for the improvement in ATP production
and cardiac function observed in aMHC-CnAb1 mice
after TAC, we treated both WT and CnAb1 over-
expressing mice with BSO, which decreases gluta-
thione synthesis by inhibiting g-glutamylcysteine
synthetase (15). Administration of BSO resulted in a
strong reduction in both GSH and total glutathione in
both WT and transgenic mice, and prevented the in-
crease in GSH induced by CnAb1 (Figures 6A and 6B).
The levels of untreated sham-operated WT mice are
showed for reference. Inhibition of glutathione syn-
thesis caused a strong decrease in ATP synthesis in all
mice (Figures 6C and 6D), compared with untreated
sham WT mice. This was accompanied by a slight
reduction in ventricular wall thickness, although
cardiac hypertrophy proceeded normally in response
to TAC (Figure 6E). Importantly, in the presence of
BSO, WT and aMHC-CnAb1 mice showed a similar
increase in LVMi (Figure 6E). BSO treatment also
resulted in reduced LVEF following TAC in CnAb1-
overexpressing mice, whereas no decline in cardiac
contractility was observed in WT mice (Figure 6F).
Together, these results suggest that the induction of
GSH by CnAb1 is necessary for the functional and
structural improvement triggered by this calcineurin
isoform and that in the absence of glutathione, the
increased substrate flux through the oxidative phos-
phorylation chain induced by CnAb1 may have dele-
terious effects on cardiac function decompensation
following pressure overload.

MICE LACKING CnAb1 DEVELOP CARDIAC HYPERTROPHY.

To determine the role of endogenous CnAb1, we
developed knockout mice lacking intron 12-13 in the
CnAb gene (CnAb1Di12 mice), which codes for the



FIGURE 7 Mice Lacking the C-Terminal Domain of CnAb1 Show Increased Cardiac Hypertrophy
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FIGURE 8 CnAbDi12 Mice Develop Increased Hypertrophy Following Pressure Overload
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unique C-terminal domain in CnAb1 (Figure 7A).
Although these mice express no CnAb1, expression
of the traditional isoform CnAb2 is unaltered
(Figures 7B and 7C). CnAb1Di12 mice are viable and
fertile, and are born at the expected Mendelian ratio.
However, we observed a significant increase in car-
diac hypertrophy with age. Echocardiographic anal-
ysis showed increased left ventricular mass in
CnAb1Di12 mice at 15 months of age and increased
cardiomyocyte area (Figures 7D to 7F). No changes
were observed in blood pressure (Figure 7G), sug-
gesting that cardiac hypertrophy was not the
consequence of systemic hypertension. Cardiac hy-
pertrophy was accompanied by a decline in LVEF in
CnAb1-deficient mice (Figure 7H). This reduced
contractile capacity was paralleled by a decreased
ability to produce ATP, both from glutamate and
malate and from succinate (Figures 7I and 7J).
Furthermore, we found increased expression of BNP
and the NFAT-regulated Rcan1.4 isoform in
CnAb1Di12 mice (Figures 7K and 7L). Increased acti-
vation of NFATc3 was confirmed by Western blot
(Figure 7M), and it was likely due to the inhibition of
the MAPKs p38 and JNK, which rephosphorylate and
inhibit NFATc. Inhibition of JNK and p38, their up-
stream kinases MKK4 and MKK3/6, or their upstream
MKK kinase ASK1 has been reported to induce car-
diac hypertrophy through NFAT activation (16–18).
We found decreased phosphorylation (indicating
decreased activation) of the MKK4/JNK and the



CENTRAL ILLUSTRATION Summary of CnAb1 Signaling in the Cardiomyocyte and
its Effect on Cardiac Function

Padrón-Barthe, L. et al. J Am Coll Cardiol. 2018;71(6):654–67.

CnAb1 activates mTOR and ATF4 to induce serine and one-carbon metabolism and promote the production of GSH, among other mediators.

Increased GSH results in reduced mitochondrial protein oxidation and increased ATP production, which improves cardiac function and

remodeling after pressure overload. ATF4¼ activating transcription factor 4; ATP¼ adenosine triphosphate; GbL¼G protein beta subunit-like;

GSH ¼ reduced glutathione; mTOR ¼ mechanistic target of rapamycin.
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MKK3/6/p38 pathways and a mild inhibition of ASK1,
which regulates both pathways, in CnAb1Di12 mice
(Figure 7M). These results suggest that the increased
hypertrophy observed in old CnAb1Di12 mice is the
result of JNK and p38 inhibition and subsequent
NFATc activation. We next studied the response of
CnAb1Di12 mice to pressure overload. Three weeks
after TAC, CnAb1-deficient mice showed increased
cardiac hypertrophy, indicated by the larger left
ventricular mass (Figures 8A and 8B). LVEF, howev-
er, was higher in CnAb1Di12 than in control mice
(Figure 8C), suggesting that cardiac hypertrophy had
not yet decompensated. CnAb1Di12 mice showed
higher ANF expression after TAC surgery, in agree-
ment with the increased hypertrophy, and reduced
expression of genes involved in serine and one-
carbon metabolism, including Phgdh, Psat1, Shmt2,
and Aldh1l2 (Figures 8D to 8I). These results suggest
that CnAb1 is necessary for normal energy homeo-
stasis in the heart and that the disturbance of this
pathway exacerbates cardiac hypertrophy.
DISCUSSION

Calcineurin activation plays a central role in the
development of maladaptive cardiac hypertrophy.
In contrast with this view, we show here that
overexpression of the alternative splicing CnAb
variant CnAb1 reduces cardiac hypertrophy and im-
proves energy production, whereas deletion of its
C-terminal unique domain results in spontaneous
cardiac hypertrophy and decreased ATP synthesis,
suggesting that the metabolic effects of calcineurin
on the heart may be isoform-specific.

Interestingly, we found that CnAb1 overexpression
activates serine and one-carbon metabolism in an
mTOR-dependent manner. This pathway is a major
source of NADH and NADPH, and supplies metabo-
lites to major metabolic pathways in the cells,
including nucleotide biosynthesis, amino acid ho-
meostasis, methylation reactions, and antioxidant
defense (12,19). The serine and one-carbon pathway
has recently gained strong attention in the cancer



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

CnAb1 overexpression in cardiomyocytes reduces left

ventricular hypertrophy and remodeling, and im-

proves systolic function following pressure overload.

CnAb1 promotes metabolic reprogramming of the

myocardium, activating the serine one-carbon

pathway, and generation of several antioxidant me-

tabolites. These metabolic changes are necessary to

preserve ATP synthesis and improve cardiac function

in CnAb1-overexpressing mice.

TRANSLATIONAL OUTLOOK: Further research is

needed to explore the therapeutic potential of serine

one-carbon pathway activation for patients with heart

failure.
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research field (12). Many tumor cells are dependent
on serine and increase Phgdh and Psat1 expression to
increase serine availability, which provides these
cells with a metabolic advantage (20). Serine and one-
carbon metabolism is also triggered by mitochondrial
dysfunction (21,22). Its role in the heart, however, is
virtually unknown.

Here, we show for the first time to our knowledge
that serine and one-carbon metabolism has a bene-
ficial effect on the heart, necessary for the improved
ATP synthesis and cardiac function induced by
CnAb1. Activation of this pathway leads to the
generation of antioxidant metabolites that may be
protective against reactive oxygen species, espe-
cially GSH. GSH production is reduced following
pressure overload, and this reduction has a causal
effect on the development of cardiac hypertrophy,
fibrosis, and remodeling that leads to a decline in
cardiac function after TAC (23). Consistent with this
beneficial effect of GSH on the hypertrophic heart,
we observed that inhibition of glutathione synthesis
prevents the functional improvement induced by
CnAb1.

We found that NFAT is equally activated in WT and
aMHC-CnAb1 mice after TAC, suggesting that CnAb1 is
not acting as an indirect inhibitor of NFAT. Instead,
CnAb1 activates the mechanistic target of rapamycin
(mTOR)/Akt pathway and the transcription factor
ATF4. We have previously reported that CnAb1 acti-
vates this pathway by direct interaction of its C-ter-
minal domain with the mTORC2 complex and that it
induces ATF4 in an mTOR-dependent manner (4,6).
Serine and one-carbon genes are known to be regu-
lated by ATF4 upon activation of mTOR (10,11,21).
These data, together with the inhibition of these
genes by rapamycin in our transgenic mice, suggest
that activation of the mTOR/ATF4 pathway by CnAb1
induces metabolic changes that allow the car-
diomyocyte to obtain energy and NADH/NADPH
through the serine and one-carbon pathway,
decreasing mitochondrial protein oxidation and pre-
serving ATP production after pressure overload
(Central Illustration).

We also report here the first description of mice
lacking CnAb1 following the deletion of CnAb intron
12-13. CnAbDi12 mice are viable and fertile, and show
no obvious malformation during embryonic devel-
opment. However, they develop cardiac hypertrophy
at 15 months of age. This is accompanied by a
reduction in ATP production and a decline in cardiac
function. In addition, we show that CnAbDi12 mice
develop increased cardiac hypertrophy after TAC. We
observed an improvement in LVEF in these mice,
which was likely the direct result of hypertrophy it-
self, because cardiac function had not yet decom-
pensated in these animals by 21 days. CnAbDi12 mice
showed decreased expression of enzymes involved in
the serine synthesis pathway, after either TAC or
sham surgery, suggesting that activation of this
pathway by CnAb1 is necessary for the maintenance
of energy balance and cardiac homeostasis.

STUDY LIMITATIONS. This study was performed in
mice. Although we show evidence of the beneficial
effects of CnAb1 overexpression and activation of the
serine and one-carbon pathway in the mouse heart,
translation of results obtained in mice to humans is
not always straightforward.

CONCLUSIONS

Our results demonstrate that CnAb1 has an opposite
effect on the heart to that of other calcineurin iso-
forms. We unveil the activation of the serine and one-
carbon metabolic pathway by CnAb1 and show its
beneficial role in the heart for the first time. These
changes in our understanding of cell signaling and
metabolism during pressure overload hypertrophy
may lead to the development of novel therapeutic
avenues based on the modulation of serine and one-
carbon metabolism.
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