Supplementary Information ## Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart Dimitrios Grivas^{1,2}, Álvaro González-Rajal^{1,3}, Carlos Guerrero Rodríguez⁴, Ricardo Garcia⁴ and José Luis de la Pompa^{1,2,*} ¹Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain. ²Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain. ³Cell Division Lab, ANZAC Research Institute, Gate 3, Hospital Road, Concord 2139, NSW, Australia. ⁴Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049 Madrid, Spain. #### **Supplementary Figure Legends** # Supplementary Figure S1. Western blot analysis of Cav1a and Cav1 (Cav1a and Cav1b) protein expression in $cav1^{cn100}$ and $cav1^{cn101}$ mutants. (a) Samples from $cav1^{+/+}$, $cav1^{cn100}$ and $cav1^{cn101}$ caudal fins were analysed by Western blot using an antibody against Cav1a (Cell Signalling Technology, catalogue #D46G3). Only the higher molecular weight band was detected in $cav1^{+/+}$, indicating the specificity of the antibody against Cav1a. In contrast, Cav1a was lost in $cav1^{cn100}$ and $cav1^{cn101}$. Tub, alpha-Tubulin; kDa, kilodalton. (b) WB using an antibody against Cav1 (Cav1a and Cav1b, BD Transduction Laboratories, #610059). Two bands were detected in $cav1^{+/+}$, indicating that the antibody recognises both Cav1a and Cav1b, in contrast to $cav1^{cn100}$ and $cav1^{cn100}$ that both Cav1a and Cav1b were lost. ### Supplementary Figure S2. Cavin1b expression in $cav1^{cn100}$ hearts Immunostaining of Cavin1 in 7 dpci $cav1^{+/+}$ (a-d') and $cav1^{cn100}$ (e-h') Tg(wt1b:GFP) hearts. - $(b,\,b')$ Magnification of selected area in a. (c-d') Magnifications of the dashed areas in b. - (f, f') Magnification of selected area in e. (g-h') Magnifications of the dashed areas in f. Dashed lines in a and e mark the valves. Scale bars: 100 μm in a, b, e, f; 50 μm in other panels. ### Supplementary Figure S3. qPCR and Cav1 expression analysis in cav1^{cn101} mutants - (a) Relative expression of caveolae-related genes by qPCR in $cav1^{cn101}$ embryos. mean±s.d. t-test, ***P<0.001. - (b-m) Immunostaining of 7 dpci $cav1^{+/+}$ and $cav1^{cn101}$ hearts with an antibody against Cav1a (b-g) or Cav1 (Cav1a and Cav1b; h-m). Scale bars: 100 μ m in b, e, h, k; 50 μ m in other panels. ### Supplementary Figure S4. Caveolae loss in cav1cn101 hearts - (a-b') TEM images of coronary vasculature of the cortical layer in $cav1^{+/+}$ and $cav1^{cn101}$ hearts. - (a', b') higher magnifications of the dashed areas in a and b; arrowheads indicate membrane-bound caveolae. Scale bars: $1 \mu m$ in a, b, and 0.5 nm in a' and b'. - (c) Quantification of caveolae number per μ m² of coronary endothelium. $n_{WT} = n_{cn101} = 4$, mean±s.d., t-test, ****P<0.0001. ### Supplementary Figure S5. Heart regeneration is unaffected in cav1^{cn101} mutants (a-j) AFOG staining of $cav1^{+/+}$ and $cav1^{cn101}$ hearts after 30 (a, b), 60 (d, e) and 90 (g-i) dpci. Collagen in blue, fibrin in red and healthy myocardium in brown. (c, f, j) The damaged area was quantified as the percentage of the collagen/fibrin area to the total ventricular area. 30 dpci n_{WT} =9, n_{cn100} =7; 60 dpci n_{WT} =8, n_{cn100} =7; 90 dpci n_{WT} =7, n_{cn100} =11. mean±s.d., t-test. Scale bars 250 μ m. ### Supplementary Figure S6. TGF β signalling is unaffected in regenerating $cav1^{cn10\theta}$ hearts (a-d) 14dpci $cav1^{+/+}$ and $cav1^{cn100}$ Tg(fli1a:GFP) hearts labelled for psmad3, GFP and MF20. (a', b') Magnification of GFP⁺ endocardial cells marked in a, b. (a'', b'') Higher magnification of cardiomyocytes marked in a, b. (c) Quantification of psmad3⁺/GFP⁺ in the injured area. t-test. $n_{WT} = 7$, $n_{cn100} = 4$. (d) Percentage of cardiomyocytes with psmad3⁺ nuclei in a 100 μ m area surrounding the damaged tissue. CM, cardiomyocytes. t-test, $n_{WT} = 7$, $n_{cn100} = 4$. Scale bars 100 μ m in a and b; 25 μ m in other panels. ## Supplementary Figure S7. Analysis of collagen and fibrin in the injured area, ventricular size and interstitial fibrosis of $cav1^{cn100}$ hearts - (a) Percentages of collagen and fibrin within the injury zone 30, 60 and 90 dpci in $cav1^{+/+}$ and $cav1^{cn100}$ hearts. Two-way ANOVA. n_{WT} 30, 60, 90 dpci = 10, 9, 9; n_{cn100} 30, 60, 90 dpci = 10, 10, 12. - (b) Ventricular size of all hearts analysed by AFOG staining. t-test. $n_{WT} = 29$; $n_{cn100} = 32$. - (c, d) Picrosirius Red staining in intact $cav I^{+/+}$ and $cav I^{cn100}$ hearts. Scale bar 250 μ m. - (e) Quantification of the red-labelled fibres in the ventricle. t-test, $n_{WT} = 5$, $n_{cn100} = 6$. # Supplementary Figure S8. Epicardial proliferation and endocardial cell function in $cav1^{cn100}$ hearts after injury - (a, b) Immunostaining of 7 dpci Tg(wt1b:GFP) heart sections labelled for BrdU and GFP. - (c) Percentage of proliferating epicardial GFP $^+$ cells. t-test, n_{WT} = 5, n_{cn100} = 6. Scale bar 100 μm . - (d, e) 3D volume rendering of the apical injured site of 7dpci Tg(fli1a:GFP)/Tg(myl7:mRFP) hearts. Yellow lines indicate the injured area and heart cartoon the x/y/z axes. - (f) Quantification of the volume of GFP $^+$ cells inside the RFP $^-$ area. t-test, n_{WT} = 3, n_{cn100} = 4. Scale bar 300 μm . ### Supplementary Figure S9. cav1^{cn101} cardiomyocyte proliferation upon injury - (a, b) Immunolabelling of 7 dpci $cav1^{+/+}$ and $cav1^{cn101}$ hearts for BrdU, MEF2 and MF20. (a', b') Higher magnifications of the dashed areas in a and b. Scale bars: 100 μ m in a, b; 10 μ m in a', b'. - (c) Percentage of the BrdU⁺ cardiomyocytes to the total number of the cardiomyocytes in a 100 μ m area surrounding the damaged tissue. CM, cardiomyocytes. $n_{WT} = 4$, $n_{cn100} = 3$. t-test, *P<0.05. Figure S9_Grivas et al.